Issue 49
A. Baryakh et alii, Frattura ed Integrità Strutturale, 49 (2019) 257-266; DOI: 10.3221/IGF-ESIS.49.25
where . A general solution of this linear differential equation with constant coefficients takes the following form:   1 2 3 4 ( ) ( ) ( ) ( ) f y C ch y C sh y C ych y C ysh y         (13) m l   
Then a stress function is determined according to the following expression:   1 2 3 4 sin ( ) ( ) ( ) ( ) x C ch y C sh y C ych y C ysh y          
(14)
and the relevant stress components are calculated according to the following formulas:
2
 
 
2
2
 
( ) x C ch y C sh y C sh y          ( ) 2 ( )
( ) ych y C ch y      2 ( )
( ) 
ysh y
sin
x
1
2
3
4
2
y
2     
2
( ) x C ch y C sh y C ych y C ysh y         ( ) ( ) ( )
sin
(15)
y
1
2
3
4
2
x
2
 
 
( ) x C sh y C ch y C ch y          ( ) ( )
( ) ysh y C sh y      ( )
( ) 
 
ych y
cos
xy
1
2
3
4
 
x y
where constants 1 , , C C C C are determined by relevant stress boundary conditions. For the test problem (Fig. 2), the boundary conditions can be represented in the form of symmetric expansion into a Fourier series: 2 3 4 ,
m x 
0     m q A A 1
(16)
cos m
l
where the expansion coefficients are defined by the following expressions:
m a 
2 sin q
1 cos a
m x 
, qa A l
l
A q 
dx
(17)
m
0
l
l
m
a
, C C C C in expressions for stresses (15):
With account of the boundary conditions, the constants 1 2 3 4 , ,
2 q sh h hch h     ( ) ( )
 
C
1
2
(2 ) 2  
sh h
h
a
cos
( ) (2 ) 2 sh h    
q
2
C
(18)
4
2
c 
sh h
a
cos
 
C C
0
2
3
where q- is determined by expression (16). The results of an analytical solution for middle line (y=0) on which only a normal stress takes place:
262
Made with FlippingBook - Online catalogs