Issue 49

V. Matveenko et alii, Frattura ed Integrità Strutturale, 49 (2019) 225-242; DOI: 10.3221/IGF-ESIS.49.23

If 1 0   , the region under consideration is bounded by only one coordinate surface 0    , and at

0   is assumed to

meet the regularity conditions

/ 0,       0, u u u  r

0

(7)

In the framework of the proposed problem formulation we can consider a composite cone occupying a region (1) (2) V V V   , where a subregion (1) V (subregion (2) V ) is made of the material with the shear modulus (1)  ( (2)  ) and Poisson’s ratio (1)  ( (2)  ) and its geometry is defined by the relations 0 r    , 0 2     , 2 0      ( 1 2      ) (Fig. 1b). In particular cases 1  and 0  can be equal to 0 and  , respectively. For a composite cone eigensolutions (6) are constructed for each subregion. At the contact line 2    we can prescribe perfect bonding conditions

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2) 

(8)

, r u u u u u u        , r

r 

r 

;

,

,



or perfect slip conditions

(1) u u  

(2)

(1)

(2)

(1)

(2)     (1)   (2)  r   

(9)

r 

;

,

0

Upon substituting Eqns. (6) into the equilibrium Eqn. (2) and going to a new independent variable

[20]

(1 cos )/2 x   

we obtain the following equations for each harmonic of the Fourier series:

 xH x

 1  

 

 

2

  

k

4

2 d u x

   k du x

1

 

 

k

1 x x 

 

x

k u x

1 2

 x x

2

dx

4

1

 dx x x H d x     1 v

(10)

 

kw x

 

  

H

1 v 

  

 

k

k

2

2

k x x 

0

 1 x x 

dx

2

2

 

1 x x

 xG x

 

2 k G     1

 

4

2 d v x

   k dv x

2

1

 

k

1 G x x 

 

1 2 G x

k v x

 x x

1

1

2

dx

4

1

dx

(11)

  

  1 2 1  

  

  

1 k G 

G k x 

k dw x

 d G x x u x     1

 

1

1

k w x

0

 x x

k

3

dx

dx

2

4

1

é ê ë

2 ù - + + 1 1 G k

(

)

( ) (

xG x

2

4

d w x

) ( ) k dw x

ú û

2

1

( )( x

)

( )

k

-

+ -

+

+

x

x

w x

1

1 2

(

)

k

2

dx

-

x x

4

1

dx

(12)

)

( ) (

) ( 1 2 1 )

é ê ê ë

ù ú ú û

1 G k dv x G k x - + -

kG

( ) ( + ê

( ) ú

k

1

1

3

+

+

=

u x

v x

0

(

)

k

k

(

)

dx

2

-

x x

4

1

x x -

2 1

Here we introduce the following notation:      2 1 1 H       

2 / 2 1 ,  

3    

4 /( 2 1),   

H

1

2

   2 1 / 1 2 ,    

 1 , 

   2 4 4 / 1 2 .        

 

  

G

G

G

1

2

3

Using (6) we can reduce boundary conditions (3)-(5) and regularity conditions (7) to condition for

228

Made with FlippingBook - Online catalogs