PSI - Issue 48
Štěpán Major / Procedia Structural Integrity 48 (2023) 230 – 237 Major / Structural Integrity Procedia 00 (2019) 000 – 000
237
8
Fig. 4. Relative decrease loading amplitude during life. Experimentally determined relative decrease of loading amplitude is shown by the yellow curve and points. The theoretically determined relative decrease in load amplitude is marked by a black curve for the first model, a red curve for the second model and a green curve for the third model. Acknowledgements This article was supported by the Specific research project No. 18/I 21. References Anand, L., Mao, Y., Talamini, B., 2019. On modeling fracture of ferritic steels due to hydrogen embrittlement. Journal of the Mechanics and Physics of Solids 122, 280-314.doi.org/10.1016/j.jmps.2018.09.012. Hagi, H., Hayashi, Y., Ohtani,N., 1979. Diffusion Coefficient of Hydrogen in Pure Iron between 230 and 300 K. Transactions of the Japan Institute of Metals 20, 7, 349-357. https://doi.org/10.2320/matertrans1960.20.349. Jiaxing, L., Mingjiu, Z., Lijian, R., 2023. Overview of hydrogen-resistant alloys for high-pressure hydrogen environment: on the hydrogen energy structural materials. Clean Energy 7, 1, 2515-4230. doi.org/10.1093/ce/zkad009 Krom, A.H.M., Koers, R.W.J., Bakker, A., 1999. Hydrogen transport near a blunting crack tip, Journal of the Mechanics and Physics of Solids 47, 4, 971-992. doi.org/10.1016/S0022-5096(98)00064-7 Kumnick, A. J., Johnson, H. H. 1980. Deep trapping states for hydrogen in deformed iron. Acta Metallurgica, 28, 33-39. doi.org/10.1016/0001 6160(80)90038-3 Lynch, S.P., 2011. Hydrogen embrittlement (HE) phenomena and mechanisms. Stress Corrosion Cracking, 90-130. doi.org/10.1533/9780857093769.1.90 Major, Š., 2022. Hydrogen Embrittlement and its Effect on Fatigue Life of Nitrided Steel in Gigacycle Fatigue: Analysis and Modelling, Journal of Physics: Conference Series 2315, 012025. doi.10.1088/1742-6596/2315/1/012025 Navarro, C., Vázquez, J., Domínguez, J., 2011. A general model to estimate life in notches and fretting fatigue. Engineering Fracture Mechanics 78, 8, 1590-1601. oi.org/10.1016/j.engfracmech.2011.01.011. Okonkwo, P. C., Barhoumi, E. M., Belgacem, I. B., Mansir, I. B., Aliyu, M., Emori, W., Uzoma, P. C., Beitelmal, W. H., Akyüz, E., Radwan, A. B., Shakoor, R.A., 2023. A focused review of the hydrogen storage tank embrittlement mechanism process. International Journal of Hydrogen Energy 48, Issue 35, 12935-12948. doi.org/10.1016/j.ijhydene.2022.12.252 Rice, J.R., Rosengren, G.F., 1968. Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids 16, 1, 1-12, https://doi.org/10.1016/0022-5096(68)90013-6. Robertson, I. M., Sofronis, P., Nagao, A., 2015. Hydrogen Embrittlement Understood. Metallurgical and Materials Transactions B 46, 1085–1103. doi.org/10.1007/s11663-015-0325-y Sabirov, I., Kolednik, O., 2005. The effect of inclusion size on the local conditions for void nucleation near a crack tip in a mild steel. Scripta Materialia, 53, 12, 1373-1378.doi.org/10.1016/j.scriptamat.2005.08.027. Sabirov, I., Duschlbauer, D., Pettermann, H.E., Kolednik, O., 2005. The determination of the local conditions for void initiation in front of a crack tip for materials with second-phase particles. Materials Science and Engineering: A 393, 1-2, 275-285. doi.org/10.1016/j.msea.2004.10.013. Sofronis, P., McMeeking, R.M., 1989. Numerical analysis of hydrogen transport near a blunting crack tip.Journal of the Mechanics and Physics of Solids 37, 3, 317-350. doi.org/10.1016/0022-5096(89)90002-1 Sun, J., 1993. Stress triaxiality constraint and crack tip parameters. Engineering Fracture Mechanics 44, 5, 789-806.doi.org/10.1016/0013 7944(93)90206-8. Usman, M. R., 2022. Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews 167, 112743.doi.org/10.1016/j.rser.2022.112743.
Made with FlippingBook Annual report maker