PSI - Issue 48

Oleh Yasniy et al. / Procedia Structural Integrity 48 (2023) 183–189 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

189

7

References

Molˈkov, Y.V., 2013. Application of the Method of Digital Image Correlation to the Construction of Stress – Strain Diagrams. Materials Science 48, 832 – 837. Pylypenko, A., Paratsa, V., 2009. The usage of complete stress - strain softening diagrams for an estimation of limiting damage of material under complex modes loading. Visnyk Ternopilskoho derzhavnoho tekhnichnoho universytetu 14, 45 - 51. [in Ukrainian] Yasnii, P. V., Fedak, S. I., Glad ’ o, V. B., Galushchak, M. P., 2004. Jumplike Deformation in AMg6 Aluminum Alloy in Tension. Strength of Materials 36, 113 – 118. Smola, A., Vishwanathan, S.V.N., 2010. Introduction to Machine Learning , Cambridge University Press, pp. 234. Pidaparti, R. M. V., Palakal, M. J., 1995. Neural network approach to fatigue-crack-growth predictions under aircraft spectrum loadings. Journal of Aircraft 32, 825-831. Mohanty, J. R., Verma, B. B., Parhi, D. R. K., Ray D. R., 2009. Application of artificial neural network for predicting fatigue crack propagation life of aluminum alloys. Archives of Computational Materials Science and Surface Engineering 1, 133 – 138. Yasnii О .P., Pastukh O. А ., Pyndus Yu. І ., Lutsyk N.S., Didych I.S., 2018. Prediction of the diagrams of fatigue fracture of D16T aluminum alloy by the methods of machine learning. Materials Science 54, 333-338. Seed, G. M., Murphy, G. S., 1998. The applicability of neural networks in modeling the growth of short fatigue cracks. Fatigue Fracture Engng Mater. Struct. 21, 183-190. Pujol, J. C. F., Pinto, J. M. A., 2011. A neural network approach to fatigue life prediction. International Journal of Fatigue 33, 313-322. Hmede, R., Chapelle, F., Lapusta, Yu., 2022. Review of Neural Network Modeling of Shape Memory Alloys. Sensors 22, 5610. Trehern, W., Ortiz-Ayala, R., Atli, K.C., Arroyave, R., Karaman, I., 2022. Data-driven shape memory alloy discovery using Artificial Intelligence Materials Selection (AIMS) framework. Acta Materialia 228, 117751. Yasniy O., Didych I., Fedak S., Lapusta Yu., 2020. Modeling of AMg6 aluminum alloy jump-like deformation properties by machine learning methods. Procedia Structural Integrity, 28,1392-1398. Didych, I., Yasniy, O., Fedak, S., Lapusta, Yu., 2022. Prediction of jump-like creep using preliminary plastic strain. Procedia Structural Integrity 36, 166-170. Didych, I., Yasniy, O., Pasternak, I., Sobashek, L., 2022. Modelling of AL-6061 aluminum alloy deformation diagrams by machine learning methods. Procedia Structural Integrity 42, 1344-1349. Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. Second Ed., Prentice Hall, Canada, pp. 823. Alpayndin, E., 2010. Introduction to Machine Learning. The Knowledge Engineering Review 25, 353. Aakash, B. S., Connors, J. P., Shields, M. D. ,2019. Stress-strain data for aluminum 6061-T651 from 9 lots at 6 temperatures under uniaxial and plane strain tension. Data in Brief, 25.

Made with FlippingBook Annual report maker