Issue 48
M. K. Hussain et alii, Frattura ed Integrità Strutturale, 48 (2019) 599-610; DOI: 10.3221/IGF-ESIS.48.58 [28] Hussain, M.K. and Murthy, K.S.R.K. (2019). Calculation of mixed mode (I/II) stress intensities at sharp V - notches using finite element notch opening and sliding displacements, Fatigue Fract. Eng. Mater. Struct. pp. 1–18. DOI: 10.1111/ffe.12977. [29] Hussain, M.K. and Murthy, K.S.R.K. (2018). A point substitution displacement technique for estimation of elastic notch stress intensities of sharp V-notched bodies, Theor. Appl. Fract. Mec., 97, pp. 87–97. DOI: 10.1016/j.tafmec.2018.07.010. [30] Henshel, R.D. and Shaw, K.G. (1976). Crack tip finite elements are unnecessary, Int. J. Numer. Meth. Eng., 9, pp. 495–507. DOI: 10.1002/nme.1620090302. [31] Barsoum, R.S. (1976). On the use of isoparametric finite elements in linear fracture mechanics, Int. J. Numer. Meth. Eng., 10, pp. 25–27. DOI: 10.1002/nme.1620100103. [32] ANSYS. Theory reference manual. Release 11. Swanson Analysis Systems, Inc., 2007. [33] Zhao, Z. and Hahn, H.G. (1992). Determining the SIF of a V-notch from the results of a mixed-mode crack, Eng. Fract. Mech., 43(4), pp. 511–518. DOI: 10.1016/0013-7944(92)90195-K. [34] Ayatollahi, M.R. and Nejati, M. (2011). Experimental evaluation of stress field around the sharp notches using photoelasticity, Mater. Des., 32, pp. 561–569. DOI: 10.1016/j.matdes.2010.08.024.
N OMENCLATURE
a
notch length
, A B
parameters related to finite element displacements
0 0 2 , , A B B
parameters related to rigid body motion
n A n n B n
1, 2,3,... 1,3, 4,...
Williams coefficients for mode I Williams coefficients for mode II
Young’s modulus
E
, F F
modes I and II normalized notch stress intensity factors compressive point load on the sharp V-notched Brazilian disc
I
II
F G
shear modulus
semi-height of the notched plate
h
L
notch tip element length
N
, K K
modes I and II notch stress intensity factors radius of the sharp V-notched Brazilian disc
I
II
R
residual
, r
polar coordinate components
r r
optimum point optimum radius
opt
op
, u v
notch field displacement
w
plate width
parameter related to notch angle
notch inclination angle notch opening angle
Kolosov constant
modes I and II eigenvalues correspond to the singularity term modes I and II eigenvalues correspond to the n -th term
1 1 , I II , I II n n
Poisson’s ratio far field stress
, u v
notch opening and sliding displacements
609
Made with FlippingBook Online newsletter