Issue 48
T. Profant et alii, Frattura ed Integrità Strutturale, 48 (2019) 503-512; DOI: 10.3221/IGF-ESIS.48.48
( ) ˆ ˆ ; H X H X =- ˆ ˆ ˆ XXY
( ) ( ) X Ξ X Ξ
( ) X Ξ
( ) X Ξ
2 ; cos sin
2 ; cos sin
H
H
; cos cos 2 q q
q q
+
q q
-
-
XXX
XYY
XXY
(13)
( ) X Ξ
( ) X Ξ
2 q q
2 q q
H
H
H
; cos sin
; cos sin
; cos 2 sin , q q
-
+
-
YXX
YYY
YXY
( ) ˆ ˆ ; H X H X = ˆ ˆ ˆ YXY
( ) X Ξ
( ) X Ξ
( ) X Ξ
2 q q
2 q q
H
H
; cos sin
; cos sin
; cos 2 sin
-
-
q q
+
XXX
XYY
XXY
(14)
( ) X Ξ
( ) X Ξ
( ) X Ξ
2 ; cos sin
2 ; cos sin
H
H
H
; cos cos 2 , q q
-
+
-
q q
q q
YXX
YYY
YXY
where
ˆ
ˆ
ˆ
ˆ X
é ê ë
ù ú û
é ê ë
ù ú û
(15)
cos = + R a
X R
cos = +X R a
cos , sin R q
cos , sin q
sin , q
sin a q +X
a
+
X
Ξ
1
1
1
1
and
¥
{
( ) ; å X Ξ
( n h k - n
) ( h k - Z - Z + Z Z ) 1 1 , ; g n - - n - -
H
, ; g
= Á
XXX
n
(16)
n
1
=
}
( ) ( 1 n h k
)
( p k - - Z ) , ; g n
n - -
n - -
2
1
, ; g
,
+ +
Z
ZZ
Z
n
-
¥
{
= Á å
( ) ; X Ξ
( n h k - n
) ( h k - Z - Z Z ) 1 , ; g n - -
n - -
1
H
p
, ; g
-
Z
XYY
n
(17)
n
1
=
}
( ) ( 1 n h k
)
( p k - + Z ) , ; g n
n - -
n - -
2
1
, ; g
,
- +
Z
ZZ
Z
n
-
¥
{
( ) ; å X Ξ
( n h k - = Â - Z + Z + Z Z ) ( h k - ) 1 1 , ; g , ; g n - - n - -
H
XXY
n
n
(18)
n
1
=
}
( ) ( 1 n h k
)
( p k - - Z ) , ; g n
n - -
n - -
2
1
, ; g
,
+ +
Z
ZZ
Z
n
-
¥
{
= Â å
( ) ; X Ξ
( n h k - n
) ( h k - Z + Z + Z Z ) 1 1 , ; g n - - n - -
H
, ; g
YXX
n
(19)
n
1
=
}
( ) ( 1 n h k
)
( p k - - Z ) , ; g n
n - -
n - -
2
1
, ; g
,
+ +
Z
ZZ
Z
n
-
¥
{
= Â å
( ) ; X Ξ
( n h k - n
) ( h k - Z + Z - Z Z ) 1 1 , ; g n - - n - -
H
, ; g
YYY
n
(20)
n
1
=
}
( ) ( 1 n h k
)
( p k - + Z ) , ; g n
n - -
n - -
2
1
, ; g
,
- +
Z
ZZ
Z
n
-
¥
( n h k - n {
( ) ; å X Ξ
) ( h k - Z + Z - Z Z ) 1 1 , ; g n - - n - -
H
, ; g
= Á
YXY
n
(21)
n
1
=
}
( ) ( 1 n h k
)
( p k - + Z ) , ; g n
n - -
n - -
2
1
, ; g
.
- +
Z
ZZ
Z
n
-
The symbols { } . Â and { } . Á mean real and imaginary value of the complex expression. The dislocation is continuously distributed along the ˆ / x e -axis in the interval ( ) ˆ 0,1 X Î . This process is modelled by introducing the density of the Burgers vector ( ) ˆ ˆ Y B X and ( ) ˆ ˆ X B X , which is in relation with Burgers vector ( ) ˆ ˆ , X Y b b = b as follows
( ) ˆ X
( ) ˆ X
b
b
d
d
( ) ˆ
( ) ˆ
ˆ Y
ˆ X d
B
B
(22)
,
,
X =
X =
ˆ X
ˆ X
ˆ Y
ˆ X
d
507
Made with FlippingBook Online newsletter