PSI - Issue 47
Stavros Tseremoglou et al. / Procedia Structural Integrity 47 (2023) 119–124 Tseremoglou/ Structural Integrity Procedia 00 (2023) 000 – 000
123
5
the band gap of La. The 5d electron is probably bound to a Ce 3+ trapped exciton and its return to the ground state of Ce 3+ occurs without light emission (Dorenbos 2005). According to another possible explanation for the LY reduction, a Ce 3+ cation in the excited state does not have exactly the same position in the crystal lattice as in the ground state, resulting in a cross-over between them in the configurational coordinate diagram. This displacement is due to change of the average distance of Ce 3+ from adjacent ions at the excited state. With temperature increase, the 5d excited electron receives the required energy to reach the cross-over point and return to the ground state 4f without radiation emission (Blasse et al. 1994). 4. Conclusions In the current study, the absolute luminescence efficiency of a LaCl 3 :Ce crystal was investigated, within a range of temperatures. From the measured AE values, the efficiency of the crystal exhibited a 47% decrease from 29 o C temperature to the maximum examined. Considering this fact, as well as the stability of the AE values at temperatures above 84 o C, we may conclude that LaCl 3 :Ce single crystal scintillator could be considered as a suitable choice for applications at harsh environments, where extreme variations of the temperature occur. References Alenkov, V., Buzanov, O.A., Khanbekov, N., Kornoukhov, V.N, Kraus, H., Mikhailik, V.B., Shuvaeva, V.A., 2013. Application of the Monte-Carlo refractive index matching (MCRIM) technique to the determination of the absolute light yield of a calcium molybdate scintillator. Journal of instrumentation 8(6), p. 6002. Alzimami, K., Abuelhia, E., Podolyak, Z., Ioannou, A., Spyrou, N.M., 2008. Characterization of LaBr 3 :Ce and LaCl 3 :Ce scintillators for gamma ray spectroscopy. Journal of Radioanalytical and Nuclear Chemistry 278, No.3, 755–759. Balcerzyk, M., Moszynski, M., Kapusta, M., 2005. Comparison of LaCl 3 :Ce and NaI(Tl) scintillators in g-ray spectrometry. Nuclear Instruments and Methods in Physics Research A 537, 50–56. Bisong, M.S., Mikhailov, V.E., Lepov, V.V., Makharova, S.N., 2019. Microstructure influence on crack resistance of steels welded structures operated in an extremely cold environment. Procedia Struct. Integr., 1st International Conference on Integrity and Lifetime in Extreme Environment (ILEE-2019) 20, 37–41. Bizarri, G., De Haas, J., Dorenbos, P., Van Eijk, C.W.E., 2006. First time measurement of gamma ‐ ray excited LaBr 3 :5% Ce 3+ and LaCl 3 :10% Ce 3+ temperature dependent properties. Physica status solidi (a) 203. R41 - R43. Blasse, G., Grabmaier, B.B., 1994. Luminescent Materials. Springer Berlin Heidelberg, p. 33-34, 72-73. Cowles, C.C., Kaspar, T.C., Kouzes, R.T., Li, D., Bell, Z.W., Ivanov, I.N., Sword, E.D., 2022. Temperature-Dependent Properties of BC-412 Polyvinyl Toluene Scintillator. IEEE Transactions on Nuclear Science , vol. 69, no. 4, pp. 942-951. Dorenbos, P., 2005. Thermal Qenching of Eu 2+ 5d – 4f Luminescence in Inorganic Compounds. Journal of Physics: Condensed Matter, 17 (50), 17. Guillot-Noel, O., De Haas, J.T.M, Dorenbos, P., Van Eijk, C.W.E., Kramer, K., Gudel, H.U., 1999. Optical and scintillation properties of cerium doped LaCl 3 , LuBr 3 and LuCl 3 . Journal of Luminescence 85, 21-35. Iltis, A., Mayhugh, M.R., Menge, P., Rozsa, C.M., Selles, O., Solovyev, V., 2006. Lanthanum halide scintillators: Properties and applications. Nuclear Instruments and Methods in Physics Research A 563, 359–363. Kandarakis, I., Cavouras, D., Panayiotakis, G. S., Nomicos, C. D., 1997. Evaluating X-Ray Detectors for Radiographic Applications: A Comparison of ZnSCdS:Ag with and Screens. Phys. Med. Biol. 42 (7), 1351–1373. Kim, C., Lee, W., Melis, A., Elmughrabi, A., Lee, K., Park, C., Yeom, J.-Y., 2021. A Review of Inorganic Scintillation Crystals for Extreme Environments. Crystals 11, 669. Lan, J., Zhao, F., Ding, M., Han, C., Zhang, Y., Chen, X., 2019. A Universal Formula for Light Attenuation of Scintillator Detector. Nuclear Physics Review, 36(1): 78-84. Linardatos, D., Revi, D., Ntoupis, V., Kalyvas, N., Ninos, K., Bakas, A., Lavdas, E., Kandarakis, I., Fountos, G., Valais, I., Michail, C., 2022. Temperature dependence of ZnSe:Te scintillator. Procedia Structural Integrity 41, 82–86. Melcher, C., Schweitzer, J., Manente, R., Peterson, C., 1991. Applications of single crystals in oil well logging. Journal of Crystal Growth 109, 37- 42. Michail, C., Kalyvas, N., Bakas, A., Ninos, K., Sianoudis, I., Fountos, G., Kandarakis, I., Panayiotakis, G., Valais, I., 2019. Absolute Luminescence Efficiency of Europium-Doped Calcium Fluoride (CaF 2 :Eu) Single Crystals under X-Ray Excitation. Crystals 9 (5), 234. Nassalski, A., Kapusta, M., Batsch, T., Wolski, D., Mockel, D., Enghardt, W., Moszynski, M., 2007. Comparative Study of Scintillators for PET/CT Detectors. IEEE Trans. Nucl. Sci. 54, 3 – 10. Nikl, M., 2006. Scintillation Detectors for X-rays. Meas. Sci. Technol. 17, R37. Ninos, K., Cavouras, D., Fountos, G., Kandarakis, I., 2010. The effect of scintillator response on signal difference to noise ratio in Xray medical imaging. Nuclear Instruments and Methods in Physics Research Section A 622, 246-255. Patri, S., Kumar, H., Prasad, K., Meikandamurthy, C., Sreedhar, B., Vijayashree, R., Prakash, V., Selvaraj, P., 2019. Failure analysis of structural screw joint in a start-up neutron detector handling mechanism. Procedia Structural Integrity 14, 688-695. Advatech UK, 2022. LaCl3:Ce—Lanthanum Chloride (Ce). Available online: https://www.advatech-uk.co.uk/lacl3_ce.html (accessed on 15 December 2022).
Made with FlippingBook Annual report maker