PSI - Issue 47

Yaroslav Dubyk et al. / Procedia Structural Integrity 47 (2023) 863–872 Yaroslav Dubyk et al./ Structural Integrity Procedia 00 (2023) 000 – 000

865

3

N

N

2

1

1

x

0

N  

Q hv 

 

(2)

x

sin

x x

x

xtg    

1       Q xtg 

1

1

Q

0

Q  

N hw 

 

x

(3)

x

sin

x x

x

M M

    

x x   x x x  M M

1

x

0

Q   

(4)

x

sin

x

M

M

2

1

x

0

M

Q   

(5)

x

sin

x x

x

  

Displacements , , u v w with over double dots indicate displacements of double time derivatives. For physical equations, deformations are related to internal forces (Figure 1) as follows:   x N H         x x N H      x x x N N G h       (6)

H

 x

   x

1

x M M   x

 

M H  

M H 

    

x     

(7)

x

2

2 12 h

Eh

H

 

,

.

Here we used notation

2 

1

Fig. 1. Conical shell and its coordinates.

Displacements are connected with strains using geometrical equations:

1

1

1

u x

v

 

1 sin

v v     

u

u  

w

x 

x 

(8)

sin

x

x xtg

  

x x x

  

1

1 sin

w x

w    

v xtg x  



(9)

x

Made with FlippingBook Annual report maker