PSI - Issue 47

Domenico Ammendolea et al. / Procedia Structural Integrity 47 (2023) 488–502 Author name / Structural Integrity Procedia 00 (2019) 000–000

501

14

COMSOL AB, 2022. COMSOL Multiphysics Reference Manual. De Maio, U., Cendón, D., Greco, F., Leonetti, L., Nevone Blasi, P., Planas, J., 2021. Investigation of concrete cracking phenomena by using cohesive fracture-based techniques: A comparison between an embedded crack model and a refined diffuse interface model. Theoretical and Applied Fracture Mechanics 115, 103062. https://doi.org/10.1016/j.tafmec.2021.103062 De Maio, U., Gaetano, D., Greco, F., Lonetti, P., Pranno, A., 2023a. The damage effect on the dynamic characteristics of FRP-strengthened reinforced concrete structures. Composite Structures 309, 116731. https://doi.org/10.1016/j.compstruct.2023.116731 De Maio, U., Greco, F., Leonetti, L., Nevone Blasi, P., Pranno, A., 2022. An investigation about debonding mechanisms in FRP-strengthened RC structural elements by using a cohesive/volumetric modeling technique. Theoretical and Applied Fracture Mechanics 117, 103199. https://doi.org/10.1016/j.tafmec.2021.103199 De Maio, U., Greco, F., Luciano, R., Sgambitterra, G., Pranno, A., 2023b. Microstructural design for elastic wave attenuation in 3D printed nacre-like bioinspired metamaterials lightened with hollow platelets. Mechanics Research Communications 128, 104045. https://doi.org/10.1016/j.mechrescom.2023.104045 Eftekhari, M., Hatefi Ardakani, S., Mohammadi, S., 2014. An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete. Theoretical and Applied Fracture Mechanics, Multiscale Modeling of Material Failure 72, 64–75. https://doi.org/10.1016/j.tafmec.2014.06.005 Erdogan, F., Sih, G.C., 1963. On the Crack Extension in Plates Under Plane Loading and Transverse Shear. Journal of Basic Engineering 85, 519–525. https://doi.org/10.1115/1.3656897 Funari, M.F., Lonetti, P., 2017. Initiation and evolution of debonding phenomena in layered structures. Theoretical and Applied Fracture Mechanics 92, 133–145. https://doi.org/10.1016/j.tafmec.2017.05.030 Gaetano, D., Greco, F., Leonetti, L., Lonetti, P., Pascuzzo, A., Ronchei, C., 2022. An interface-based detailed micro-model for the failure simulation of masonry structures. Engineering Failure Analysis 142, 106753. https://doi.org/10.1016/j.engfailanal.2022.106753 Gdoutos, E.E., Konsta-Gdoutos, M.S., Danoglidis, P.A., 2016. Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study. Cement and Concrete Composites 70, 110–118. https://doi.org/10.1016/j.cemconcomp.2016.03.010 Greco, F., 2013. A study of stability and bifurcation in micro-cracked periodic elastic composites including self-contact. International Journal of Solids and Structures 50, 1646–1663. https://doi.org/10.1016/j.ijsolstr.2013.01.036 Greco, F., Ammendolea, D., Lonetti, P., Pascuzzo, A., 2021. Crack propagation under thermo-mechanical loadings based on moving mesh strategy. Theoretical and Applied Fracture Mechanics 114, 103033. https://doi.org/10.1016/j.tafmec.2021.103033 Greco, F., Gaetano, D., Leonetti, L., Lonetti, P., Pascuzzo, A., Skrame, A., 2022. Structural and seismic vulnerability assessment of the Santa Maria Assunta Cathedral in Catanzaro (Italy): classical and advanced approaches for the analysis of local and global failure mechanisms. Frattura ed Integrità Strutturale 16, 464–487. https://doi.org/10.3221/IGF-ESIS.60.32 Greco, F., Leonetti, L., Luciano, R., Pascuzzo, A., Ronchei, C., 2020a. A detailed micro-model for brick masonry structures based on a diffuse cohesive-frictional interface fracture approach. Procedia Structural Integrity 25, 334–347. https://doi.org/10.1016/j.prostr.2020.04.038 Greco, F., Leonetti, L., Nevone Blasi, P., 2012. Non-linear macroscopic response of fiber-reinforced composite materials due to initiation and propagation of interface cracks. Engineering Fracture Mechanics, Special Issue on Fracture and Contact Mechanics for Interface Problems 80, 92–113. https://doi.org/10.1016/j.engfracmech.2011.10.003 Greco, F., Lonetti, P., Pascuzzo, A., 2020b. A moving mesh FE methodology for vehicle–bridge interaction modeling. Mechanics of Advanced Materials and Structures 27, 1256–1268. https://doi.org/10.1080/15376494.2018.1506955 Habel, K., Gauvreau, P., 2008. Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading. Cement and Concrete Composites 30, 938–946. https://doi.org/10.1016/j.cemconcomp.2008.09.001 Habel, K., Viviani, M., Denarié, E., Brühwiler, E., 2006. Development of the mechanical properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC). Cement and Concrete Research 36, 1362–1370. https://doi.org/10.1016/j.cemconres.2006.03.009 Hsie, M., Tu, C., Song, P.S., 2008. Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, Advances in microstructure-based modeling and characterization of deformation microstructures held at the TMS Annual Meeting 2007, Orlando, Florida 494, 153–157. https://doi.org/10.1016/j.msea.2008.05.037 Huang, H., Teng, L., Gao, X., Khayat, K.H., Wang, F., Liu, Z., 2022. Effect of carbon nanotube and graphite nanoplatelet on composition, structure, and nano-mechanical properties of C-S-H in UHPC. Cement and Concrete Research 154, 106713. https://doi.org/10.1016/j.cemconres.2022.106713 Kang, S.-T., Lee, Y., Park, Y.-D., Kim, J.-K., 2010. Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber. Composite Structures 92, 61–71. https://doi.org/10.1016/j.compstruct.2009.06.012 Krahl, P.A., Carrazedo, R., El Debs, M.K., 2018. Mechanical damage evolution in UHPFRC: Experimental and numerical investigation. Engineering Structures 170, 63–77. https://doi.org/10.1016/j.engstruct.2018.05.064 Lu, L., Ouyang, D., 2017. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets. Nanomaterials 7, 187. https://doi.org/10.3390/nano7070187 Ma, M.-H., Wu, Z.-M., Zheng, J.-J., Wang, Y.-J., Yu, R.C., Fei, X.-D., 2021. Effect of loading rate on mixed mode I-II crack propagation in concrete. Theoretical and Applied Fracture Mechanics 112, 102916. https://doi.org/10.1016/j.tafmec.2021.102916 Máca, P., Sovják, R., Vav ř iník, T., 2013. Experimental Investigation of Mechanical Properties of UHPFRC. Procedia Engineering, CONCRETE AND CONCRETE STRUCTURES 2013 - 6th International Conference, Slovakia 65, 14–19. https://doi.org/10.1016/j.proeng.2013.09.004 Meng, W., Khayat, K.H., 2016. Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers. Composites Part B: Engineering 107, 113–122. https://doi.org/10.1016/j.compositesb.2016.09.069 Nguyen Amanjean, E., Mouret, M., Vidal, T., 2019. Effect of design parameters on the properties of ultra-high performance fibre-reinforced concrete in the fresh state. Construction and Building Materials 224, 1007–1017. https://doi.org/10.1016/j.conbuildmat.2019.07.284 Park, S.H., Kim, D.J., Ryu, G.S., Koh, K.T., 2012. Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete. Cement

Made with FlippingBook Annual report maker