PSI - Issue 47

J.E.S.M. Silva et al. / Procedia Structural Integrity 47 (2023) 70–79 Silva et al. / Structural Integrity Procedia 00 (2019) 000 – 000

79

10

tendency to reduce by increasing  .  xy stresses are mostly uniform along the adhesive, although presenting minor peak values at the adhesive edges that also tend to reduce for higher  . Higher adhesive stiffness led to higher stress gradients. The failure analysis revealed a cohesive failure of the adhesive layer for most joint configurations, except for  =3.43º and the AV138 and 2015 due to the higher loads involved. PEEQ and SDEG analyses gave a better insight into the failure process. The P m analysis showed increasing tensile strength by reducing  , and best results for the AV138 due to the highest strength between three tested adhesives. Under the studied TSJ configuration, in which stresses are nearly uniform, it was found that the adhesive strength is preponderant over ductility, unlike happens for example in SLJ. Thus, string but brittle adhesives are recommended over less strong but ductile adhesives. References Adams, R. D. (2005). Adhesive bonding: science, technology and applications. Amsterdam, Netherland, Elsevier. Adams, R. D. and Peppiatt, N. A., 1974. Stress analysis of adhesive-bonded lap joints. Journal of Strain Analysis 9(3), 185-196. Alfano, G., 2006. On the influence of the shape of the interface law on the application of cohesive-zone models. Composites Science and Technology 66(6), 723-730. Barbosa, D. R., Campilho, R., Rocha, R. J. B. and Ferreira, L. R. F., 2018. Experimental and numerical assessment of tensile loaded tubular adhesive joints. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233(3), 452-464. Belytschko, T. and Black, T., 1999. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5), 601-620. Campilho, R., Pinto, A., Banea, M. D., Silva, R. and da Silva, L. F., 2011a. Strength improvement of adhesively-bonded joints using a reverse-bent geometry. Journal of Adhesion Science and Technology 25(18), 2351-2368. Campilho, R. D., Banea, M. D., Neto, J. and da Silva, L. F., 2013. Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion and Adhesives 44, 48-56. Campilho, R. D. S. G., Banea, M. D., Chaves, F. J. P. and Silva, L. F. M. d., 2011b. eXtended Finite Element Method for fracture characterization of adhesive joints in pure mode I. Computational Materials Science 50(4), 1543-1549. Campilho, R. D. S. G., de Moura, M. F. S. F. and Domingues, J. J. M. S., 2007. Stress and failure analyses of scarf repaired CFRP laminates using a cohesive damage model. Journal of Adhesion Science and Technology 21(9), 855-870. de Sousa, C. C. R. G., Campilho, R. D. S. G., Marques, E. A. S., Costa, M. and da Silva, L. F. M., 2017. Overview of different strength prediction techniques for single-lap bonded joints. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 231(1-2), 210-223. Faneco, T. M. S., Campilho, R., Silva, F. J. G. and Lopes, R. (2017). Strength and fracture characterization of a novel polyurethane adhesive for the automotive industry. Ferreira, L. R. F., Campilho, R. D. S. G., Rocha, R. J. B. and Barbosa, D. R., 2019. Geometrical and material optimization of tensile loaded tubular adhesive joints using cohesive zone modelling. The Journal of Adhesion 95(5-7), 425-449. Goland, M. and Reissner, E., 1944. The stresses in cemented joints. Journal of Applied Mechanics(66), A17-A27. Hosseinzadeh, R., Shahin, K. and Taheri, F., 2007. A simple approach for characterizing the performance of metallic tubular adhesively-bonded joints under torsion loading. Journal of Adhesion Science and Technology 21(16), 1613-1631. Kaiser, I. and Tan, K. T., 2020. Damage and strength analysis of Carbon Fiber Reinforced Polymer and Titanium tubular-lap joint using hybrid adhesive design. International Journal of Adhesion and Adhesives 103, 102710. Labbé, S. and Drouet, J.-M., 2012. A multi-objective optimization procedure for bonded tubular-lap joints subjected to axial loading. International Journal of Adhesion and Adhesives 33, 26-35. Moreira, R. D. F. and Campilho, R. D. S. G., 2015. Strength improvement of adhesively-bonded scarf repairs in aluminium structures with external reinforcements. Engineering Structures 101, 99-110. Neto, J., Campilho, R. D. and Da Silva, L., 2012. Parametric study of adhesive joints with composites. International Journal of Adhesion and Adhesives 37, 96-101. Nguyen, V. and Kedward, K. T., 2001. Non-linear Modeling of Tubular Adhesive Scarf Joints Loaded in Tension. The Journal of Adhesion 76(3), 265-292. Parashar, A. and Mertiny, P., 2012. Adhesively bonded composite tubular joints: Review. International Journal of Adhesion and Adhesives 38, 58 68. Petrie, E. M. (2000). Handbook of adhesives and sealants. New York, USA, McGraw-Hill. Sadeghi, M. Z., Gabener, A., Zimmermann, J., Saravana, K., Weiland, J., Reisgen, U. and Schroeder, K. U., 2020. Failure load prediction of adhesively bonded single lap joints by using various FEM techniques. International Journal of Adhesion and Adhesives 97, 102493-102493. Taib, A. A., Boukhili, R., Achiou, S. and Boukehili, H., 2006. Bonded joints with composite adherends. Part II. Finite element analysis of joggle lap joints. International Journal of Adhesion and Adhesives 26(4), 237-248. Volkersen, O., 1938. Die nietkraftoerteilung in zubeanspruchten nietverbindungen konstanten loschonquerschnitten. Luftfahrtforschung(15), 41 47. Weißgraeber, P., Stein, N. and Becker, W., 2014. A general sandwich-type model for adhesive joints with composite adherends. International Journal of Adhesion and Adhesives 55, 56-63. Woelke, P. B., Shields, M. D., Abboud, N. N. and Hutchinson, J. W., 2013. Simulations of ductile fracture in an idealized ship grounding scenario using phenomenological damage and cohesive zone models. Computational Materials Science 80, 79-95. Yang, Q. and Cox, B., 2005. Cohesive models for damage evolution in laminated composites. International Journal of Fracture 133(2), 107-137.

Made with FlippingBook Annual report maker