PSI - Issue 47
Robert Eriksson et al. / Procedia Structural Integrity 47 (2023) 227–237
237
R. Eriksson, A. Azeez / Structural Integrity Procedia 00 (2023) 000–000
11
˙ ϵ p
= ˙ γ sign( σ − q ) flowrule ˙ α = ˙ γ internal hardening variable ˙ q = ˙ γ H sign( σ − q ) back stress
(A.2) (A.3) (A.4) (A.5) (A.6)
f ≡ | σ − q | − ( Y + H K α ) ≤ 0 yield function / yield criterion ˙ γ ≥ 0 , f ≤ 0 , ˙ γ f = 0 , ˙ γ ˙ f = 0 Kuhn–Tucker conditions / consistency condition
where ϵ is total strain, ϵ e is elastic strain, ϵ p is plastic strain, ˙ γ is plastic flow rate, q is the back stress, H is the kinematic hardening modulus, α is an internal hardening variable, Y is the material’s yield strength and H K is the plastic modulus. The model is also given as pseudocode in Algorithm 1
References
Beremin, F., 1983. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall. Trans. A 14A, 2277–2287. Blumenauer, H., Krempe, M., 2001. Investigation of the warm prestress e ff ect. Mater. Trans. 42, 85–89. Chell, G., 1986. The e ff ects of sub-critical crack growth on the fracture behaviour of cracked ferritic steels after warm prestressing. Fatigue Fract. Engng Mater. Struct. 9, 259–274. Chen, J., Wang, H., Wang, G., Dong, Z., Chen, X., 2002. Mechanism of e ff ect of warm prestressing (WPS) on apparent toughness of notched steel specimens part II: Calculations and analyses. Int. J. Fracture 117, 375–392. Eder, M., Chen, X., 2021. Alternative integration approaches in the weight function method for crack problems. J. Appl. Comput. Mech. 7, 1719–1725. doi: 10.22055/JACM.2021.37137.2968 . Hure, J., Vaille, C., Wident, P., Moinereau, D., Landron, C., Chapuliot, S., Benhamou, C., Tanguy, B., 2015. Warm prestress e ff ect on highly radiated reactor pressure vessel steel. J. Nuclear Mater. 464, 281–293. Jacquemoud, C., Marie, S., Ne´de´lec, M., 2013. Evaluation of the active plasticity hypothesis as a relevant justification of the warm pre stressing e ff ect. Eng. Fract. Mech. 104, 16–28. doi: 10.1016/j.engfracmech.2013.03.003 . Kordisch, H., Bo¨schen, R., Blauel, J., Schmitt, W., Nagel, G., 2000. Experimental and numerical investigations of the warm-prestressing (WPS) e ff ect considering di ff erent load paths. Nuclear Eng. Design 198, 89–96. Lefevre, W., Barbier, G., Masson, R., Rousselier, G., 2002. A modified Beremin model to simulate the warm pre-stress e ff ect. Nucl. Eng. Des. 216, 27–42. Reed, P., Knott, J., 1996. Investigation of the role of residual stresses in the warm prestressing (WPS) e ff ect. part I — experimental. Fatigue Fract. Engng Mater. Struct. 19, 485–500. Smith, D., Hadidi-Moud, S., Mahmoudi, A., Mirzaee Sisan, A., Truman, C., 2010. Experiments and predictions of the e ff ects of load history on cleavage fracture in steel. Eng. Fract. Mech. 77, 631–645. doi: 10.1016/j.engfracmech.2009.11.016 . Wallin, K., 2003. Master curve implementation of the warm pre-stress e ff ect. Eng. Fract. Mech. 70, 2587–2602. doi: 10.1016/S0013-7944(03) 00064-X . Wallin, K., 2004. Warm pre-stress based pre-cracking criteria for fracture toughness testing. Eng. Fract. Mech. 71, 1737–1750. doi: 10.1016/ S0013-7944(03)00245-5 . Wang, G., Dong, Z., Chen, J., Chen, X., 2002. Mechanism of e ff ect of warm prestressing (WPS) on apparent toughness of notched steel specimens: Part I: Experimental. Int. J. Fracture 117, 359–373.
Made with FlippingBook Annual report maker