PSI - Issue 47
Johannes Wiener et al. / Procedia Structural Integrity 47 (2023) 253–260 Johannes Wiener/ Structural Integrity Procedia 00 (2019) 000–000
260
8
Hale, G. E., and Ramsteiner, F. 2001. J-Fracture toughness of polymers at slow speed. Pages 123–157 in: Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites. Elsevier. Irwin, G. R. 1960. Plastic zone near a crack and fracture toughness. Proceeding in Sagamore Ordnance Material Conference(IV63–1V78). Jia, Z., Yu, Y., Hou, S., and Wang, L. 2019. Biomimetic architected materials with improved dynamic performance. J. Mech. Phys. Solids 125:178-197. https://doi.org/10.1016/j.jmps.2018.12.015. Kolednik, O., Kasberger, R., Sistaninia, M., Predan, J., and Kegl, M. 2019a. Development of damage-tolerant and fracture-resistant materials by utilizing the material inhomogeneity effect. J. Appl. Mech.(86):1-12. Kolednik, O., Kasberger, R., Sistaninia, M., Predan, J., and Kegl, M. 2019b. Development of Damage-Tolerant and Fracture-Resistant Materials by Utilizing the Material Inhomogeneity Effect. J. Appl. Mech. 86(11):263. https://doi.org/10.1115/1.4043829. Köpplmayr, T., and Miethlinger, J. 2014. Modeling viscoelastic flow in a multiflux static mixer. Pages 556–559 in: Nuremberg, Germany, 15–19 July 2013. American Institute of Physics. Levi, C., Barton, J. L., Guillemet, C., Le Bras, E., and Lehuede, P. 1989. A remarkably strong natural glassy rod: The anchoring spicule of the Monorhaphis sponge. J. Mater. Sci. Lett. 8(3):337-339. https://doi.org/10.1007/BF00725516. Miserez, A., Weaver, J. C., Thurner, P. J., Aizenberg, J., Dauphin, Y., Fratzl, P., Morse, D. E., and Zok, F. W. 2008. Effects of Laminate Architecture on Fracture Resistance of Sponge Biosilica: Lessons from Nature. Adv. Funct. Mater. 18(8):1241-1248. https://doi.org/10.1002/adfm.200701135. Sistaninia, M., and Kolednik, O. 2014. Effect of a single soft interlayer on the crack driving force. Eng. Fract. Mech. 130:21-41. https://doi.org/10.1016/j.engfracmech.2014.02.026. Sistaninia, M., and Kolednik, O. 2017. Improving strength and toughness of materials by utilizing spatial variations of the yield stress. Acta. Mat. 122:207-219. https://doi.org/10.1016/j.actamat.2016.09.044. Wiener, J. 2023. Biomimetic concepts for the optimization of mechanical properties in layered polymeric materials. Wiener, J., Arbeiter, F., Kolednik, O., and Pinter, G. 2022. Influence of Layer Architecture on Fracture Toughness and Specimen Stiffness in Polymer Multilayer Composites. Materials & Design:110828. https://doi.org/10.1016/j.matdes.2022.110828. Wiener, J., Arbeiter, F., Tiwari, A., Kolednik, O., and Pinter, G. 2020. Bioinspired toughness improvement through soft interlayers in mineral reinforced polypropylene. Mechanics of Materials 140:103243. https://doi.org/10.1016/j.mechmat.2019.103243. Wiener, J., Kaineder, H., Kolednik, O., and Arbeiter, F. 2021. Optimization of Mechanical Properties and Damage Tolerance in Polymer-Mineral Multilayer Composites. Materials (Basel, Switzerland) 14(4). https://doi.org/10.3390/ma14040725.
Made with FlippingBook Annual report maker