PSI - Issue 47

Saud Alsaghir et al. / Procedia Structural Integrity 47 (2023) 437–447 Saud Alsaghir/ Structural Integrity Procedia 00 (2023) 000 – 000

441

5

Table 2. The average hardness of the three materials & drill pipes.

WϭϭϬ

>ϴϬ

ƐŵϮϱϯϱͲϭϭϬ

ƌŝůů WŝƉĞ͕ EŽŶͲ ,ĂƌĚĞŶĞĚ ^ƵƌĨĂĐĞ

ƌŝůů WŝƉĞ͕ ,ĂƌĚĞŶĞĚ ^ƵƌĨĂĐĞ

,ĂƌĚŶĞƐƐ

ϯϬ͘ ϴϰ ц Ϭ͘ ϵϴ

ϭϴ͘ ϰϰ ц Ϭ͘ ϯϮϳ

ϯϭ͘ ϳϯ ц ϭ͘ ϴϴ

Ϯϲ͘ ϭϴ ц ϭ͘ ϱ

ϱϳ͘ ϵϰ ц Ϭ͘ ϴ

4.2. Casing wear volume The wear volume of the crescent shape (mm 3 /mm width) is calculated using the below equation.

Figure 3. Casing wear groove. =

2 + 2√ ( − )( − )( − ) − 2 (1)

Where:

dŚĞ ŝŶŶĞƌ ƌĂĚŝƵƐ ŽĨ ƚŚĞ ĐĂƐŝŶŐ͕ ŵŵ dŚĞ ŽƵƚĞƌ ƌĂĚŝƵƐ ŽĨ ƚŚĞ ƚŽŽů ũŽŝŶƚ͕ ŵŵ

− ( − )͕ ŵŵ ( + + )/2͕ ŵŵ cos ( 2 + 2 − 2 )/2 ( sin cos − ) dŚĞ ǁĞĂƌ ĚĞƉƚŚ͕ ŵŵ

In-situ displacement indicator used to measure the wear depth under the oil-based condition at two different side loads (1000N and 1400N) and constant RPM (115 rpm) and ROP (2.5 mm/s) for three different materials (P110 and L80 and sm2535-110). The wear volume for each sample is shown in Table (3). Based on the obtained results illustrated in Figure (4), it can be observed that for only rotational and combined motions, increasing the side load will increase the wear volume for all materials. Figure (5) shows that the sliding motion has a significant effect on the wear volume for the three different materials under the same applied load. Table 3. Wear volume of the tested casing samples at 115 rpm.

^ŝĚĞ >ŽĂĚ ;EͿ

ZKW ;ŵŵͬ ƐͿ

tĞĂƌ sŽůƵŵĞ ;ŵŵ ϯ Ϳ

^ĂŵƉůĞ EŽ͘

DĂƚĞƌŝĂů

WϭϭϬ WϭϭϬ

ϭϰϬϬ ϭϰϬϬ

Ϭ

ϱϵ͘ϭϴ

^ϭͲ

Ϯ͘ϱ

ϰϬϮϯ͘Ϯϳ

Made with FlippingBook Annual report maker