PSI - Issue 47

L.A.R. Gomes et al. / Procedia Structural Integrity 47 (2023) 94–101 Gomes et al. / Structural Integrity Procedia 00 (2019) 000 – 000

101

8

measurement issues.  y and  xy stress analyses showed stresses resembling the widely known static loading, peaking at the overlap edges. Peak stresses were smaller for the more compliant 7752. The P -  curves and P m were evaluated for both adhesives, showing a practically linear increase of P m with L O for the 7752, which can be justified by this adhesive’s ductility. On the other hand, the AV138 showed higher P m for all L O , but there is a marked reduction in performance averaged to the bonded area for higher L O . Thus, it was found that stiff and strong adhesives work better under impact, although their lack of ductility can affect the performance for higher L O . References Adams, R. D. (2005). Adhesive bonding: science, technology and applications, Elsevier. Alfano, M., Furgiuele, F., Leonardi, A., Maletta, C. and Paulino, G. H., 2007. Cohesive Zone Modeling of Mode I Fracture in Adhesive Bonded Joints. Key Engineering Materials 348-349, 13-16. Allred, R. E. and Guess, T. R., 1978. Efficiency of double-lapped composite joints in bending. Composites 9(2), 112-118. Campilho, R. D. S. G., Banea, M. D., Neto, J. A. B. P. and da Silva, L. F. M., 2013. Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion and Adhesives 44, 48-56. Campilho, R. D. S. G., Banea, M. D., Pinto, A. M. G., da Silva, L. F. M. and de Jesus, A. M. P., 2011. Strength prediction of single- and double lap joints by standard and extended finite element modelling. International Journal of Adhesion & Adhesives 31(5), 363-372. de Sousa, C. C. R. G., Campilho, R. D. S. G., Marques, E. A. S., Costa, M. and da Silva, L. F. M., 2017. Overview of different strength prediction techniques for single-lap bonded joints. Journal of Materials: Design and Application - Part L 231, 210-223. Dimitri, R., Trullo, M., De Lorenzis, L. and Zavarise, G., 2015. Coupled cohesive zone models for mixed-mode fracture: A comparative study. Engineering Fracture Mechanics 148, 145-179. Fernandes, T. A. B., Campilho, R. D. S. G., Banea, M. D. and da Silva, L. F. M., 2015. Adhesive selection for single lap bonded joints: Experimentation and advanced techniques for strength prediction. The Journal of Adhesion 91(10-11), 841-862. Hazimeh, R., Challita, G., Khalil, K. and Othman, R., 2015. Finite element analysis of adhesively bonded composite joints subjected to impact loadings. International Journal of Adhesion and Adhesives 56, 24-31. Johnson, G. R. and Cook, W. H., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics 21(1), 31-48. Jousset, P. and Rachik, M., 2014. Comparison and evaluation of two types of cohesive zone models for the finite element analysis of fracture propagation in industrial bonded structures. Engineering Fracture Mechanics 132, 48-69. Li, W. D., Ma, M., Han, X., Tang, L. P., Zhao, J. N. and Gao, E. P., 2016. Strength Prediction of Adhesively Bonded Single Lap Joints Under Salt Spray Environment Using a Cohesive Zone Model. The Journal of Adhesion 92(11), 916-937. Liao, L., Kobayashi, T., Sawa, T. and Goda, Y., 2011. 3-D FEM stress analysis and strength evaluation of single-lap adhesive joints subjected to impact tensile loads. International Journal of Adhesion and Adhesives 31(7), 612-619. Lißner, M., Alabort, E., Erice, B., Cui, H., Blackman, B. R. K. and Petrinic, N., 2020. On the dynamic response of adhesively bonded structures. International Journal of Impact Engineering 138, 103479. Machado, J. J. M., Marques, E. A. S., Campilho, R. and da Silva, L. F. M., 2016. Mode I fracture toughness of CFRP as a function of temperature and strain rate. Journal of Composite Materials 51(23), 3315-3326. Nunes, S. L. S., Campilho, R. D. S. G., da Silva, F. J. G., de Sousa, C. C. R. G., Fernandes, T. A. B., Banea, M. D. and da Silva, L. F. M., 2016. Comparative failure assessment of single and double-lap joints with varying adhesive systems. The Journal of Adhesion 92, 610-634. Peres, L. M. C., Arnaud, M. F. T. D., Silva, A. F. M. V., Campilho, R. D. S. G., Machado, J. J. M., Marques, E. A. S., dos Reis, M. Q. and Da Silva, L. F. M., 2022. Geometry and adhesive optimization of single-lap adhesive joints under impact. The Journal of Adhesion 98, 677-703. Petrie, E. M. (2000). Handbook of adhesives and sealants. New York, USA, McGraw-Hill. Ribeiro, T. E. A., Campilho, R. D. S. G., da Silva, L. F. M. and Goglio, L., 2016. Damage analysis of composite – aluminium adhesively-bonded single-lap joints. Composite Structures 136, 25-33. Rocha, R. J. B. and Campilho, R. D. S. G., 2018. Evaluation of different modelling conditions in the cohesive zone analysis of single-lap bonded joints. The Journal of Adhesion 94(7), 562-582. Sane, A. U., Padole, P. M., Manjunatha, C. M., Uddanwadiker, R. V. and Jhunjhunwala, P., 2018. Mixed mode cohesive zone modelling and analysis of adhesively bonded composite T-joint under pull-out load. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40(3), 167. Silva, A. F. M. V., Peres, L. M. C., Campilho, R. D. S. G., Rocha, R. J. B. and Silva, F. J. G., 2022. Cohesive zone parametric analysis in the tensile impact strength of tubular adhesive joints. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089221088261. Sukhaya, T. and Aimmanee, S., 2022. A unified theory of adhesive-bonded tubular joints with dissimilar adherends subjected to a multiplicity of axisymmetric loads. International Journal of Adhesion and Adhesives 112, 102991. Valente, J. P. A., Campilho, R. D. S. G., Marques, E. A. S., Machado, J. J. M. and da Silva, L. F. M., 2019. Adhesive joint analysis under tensile impact loads by cohesive zone modelling. Composite Structures 222, 110894. Valente, J. P. A., Campilho, R. D. S. G., Marques, E. A. S., Machado, J. J. M. and da Silva, L. F. M., 2020. Geometrical optimization of adhesive joints under tensile impact loads using cohesive zone modelling. International Journal of Adhesion and Adhesives 97, 102492. Zgoul, M. and Crocombe, A. D., 2004. Numerical modelling of lap joints bonded with a rate-dependent adhesive. International journal of adhesion and adhesives 24(4), 355-366. Zhang, F., Yang, X., Xia, Y., Zhou, Q., Wang, H.-P. and Yu, T.-X., 2015. Experimental study of strain rate effects on the strength of adhesively bonded joints after hygrothermal exposure. International Journal of Adhesion and Adhesives 56, 3-12.

Made with FlippingBook Digital Proposal Maker