PSI - Issue 47

Bayu Anggara, Dominicus Danardono DPT*, Eko Prasetya Budiana / Structural Integrity Procedia 00 (2019) 000 – 000 7

Bayu Anggara et al. / Procedia Structural Integrity 47 (2023) 675–684

681

0

10 20

0,2

350 360

30

340

40

330

0,15

50

320

60

310

0,1

70

300

0,05

80

270 280 290

90 100

Cm clean airfoil Cm Trapezoid Cm Rectangular Cm Triangular

0

110

260

120

250

130

240

140

230

220

150

210

160

200 190

180 170

Fig. 6. Variation of Cm with respect to θ during one rotational period at TSR 1.5

3.2. Power Coefficient The power coefficient is shown in this study results from the average value of Cm multiplied by TSR. The power coefficients of each rectangular, trapezoid, and triangular in the TSR range of 0.5-2.5 are shown in Table 3.

Table 3. Average Cm and Cp of the turbines with HEV

Clean Airfoil

Rectangular HEV

Trapezoid HEV

Triangular HEV

Average Cm

Average Cm

Average Cm

Average Cm

Cp

Cp

Cp

Cp

TSR

0,5

0,06 0,07 0,09 0,15 0,13

0,029 0,072

0,06 0,09 0,11 0,16 0,10

0,03

0,06 0,09 0,12 0,13 0,14

0,032 0,094

0,07 0,10 0,11 0,13 0,14

0,034 0,096

1

0,092

1,5

0,14

0,16 0,31 0,25

0,18 0,25 0,35

0,17 0,26 0,36

2

0,3

2,5

0,32

The data in the table above shows the effect of adding HEV on the power coefficient generated by the turbine. The variation of the addition of the turbine with the highest power coefficient results in the triangular HEV variation, which occurs at TSR = 2.5 with a Cp value of 0.36, followed by the HEV trapezoidal variation with a Cp value of 0.35. The same thing was also stated by Nair et al. (2020) that a type of HEV can have a greater lift force using micro tabs. It can generate more incoming power in a shorter period with lower wind speeds and angles of attack.

Made with FlippingBook Digital Proposal Maker