PSI - Issue 47
Bayu Anggara, Dominicus Danardono DPT*, Eko Prasetya Budiana / Structural Integrity Procedia 00 (2019) 000 – 000 7
Bayu Anggara et al. / Procedia Structural Integrity 47 (2023) 675–684
681
0
10 20
0,2
350 360
30
340
40
330
0,15
50
320
60
310
0,1
70
300
0,05
80
270 280 290
90 100
Cm clean airfoil Cm Trapezoid Cm Rectangular Cm Triangular
0
110
260
120
250
130
240
140
230
220
150
210
160
200 190
180 170
Fig. 6. Variation of Cm with respect to θ during one rotational period at TSR 1.5
3.2. Power Coefficient The power coefficient is shown in this study results from the average value of Cm multiplied by TSR. The power coefficients of each rectangular, trapezoid, and triangular in the TSR range of 0.5-2.5 are shown in Table 3.
Table 3. Average Cm and Cp of the turbines with HEV
Clean Airfoil
Rectangular HEV
Trapezoid HEV
Triangular HEV
Average Cm
Average Cm
Average Cm
Average Cm
Cp
Cp
Cp
Cp
TSR
0,5
0,06 0,07 0,09 0,15 0,13
0,029 0,072
0,06 0,09 0,11 0,16 0,10
0,03
0,06 0,09 0,12 0,13 0,14
0,032 0,094
0,07 0,10 0,11 0,13 0,14
0,034 0,096
1
0,092
1,5
0,14
0,16 0,31 0,25
0,18 0,25 0,35
0,17 0,26 0,36
2
0,3
2,5
0,32
The data in the table above shows the effect of adding HEV on the power coefficient generated by the turbine. The variation of the addition of the turbine with the highest power coefficient results in the triangular HEV variation, which occurs at TSR = 2.5 with a Cp value of 0.36, followed by the HEV trapezoidal variation with a Cp value of 0.35. The same thing was also stated by Nair et al. (2020) that a type of HEV can have a greater lift force using micro tabs. It can generate more incoming power in a shorter period with lower wind speeds and angles of attack.
Made with FlippingBook Digital Proposal Maker