PSI - Issue 47
Umberto De Maio et al. / Procedia Structural Integrity 47 (2023) 469–477 Author name / Structural Integrity Procedia 00 (2019) 000–000
477
9
Greco, F., Luciano, R., Serino, G., Vaiana, N., 2018. A mixed explicit–implicit time integration approach for nonlinear analysis of base-isolated structures. Ann. Solid Struct. Mech. 10, 17–29. https://doi.org/10.1007/s12356-017-0051-z Hamad, W.I., Owen, J.S., Hussein, M.F.M., 2015. Modelling the degradation of vibration characteristics of reinforced concrete beams due to flexural damage: VIBRATION CHARACTERISTICS OF DAMAGED REINFORCED CONCRETE BEAMS. Struct. Control Health Monit. 22, 939–967. https://doi.org/10.1002/stc.1726 Hanif, M.U., Ibrahim, Z., Ghaedi, K., Hashim, H., Javanmardi, A., 2018. Damage assessment of reinforced concrete structures using a model-based nonlinear approach – A comprehensive review. Construction and Building Materials 192, 846–865. https://doi.org/10.1016/j.conbuildmat.2018.10.115 Karbhari, V.M., Lee, L.S.-W., 2009. Vibration-based damage detection techniques for structural health monitoring of civil infrastructure systems, in: Structural Health Monitoring of Civil Infrastructure Systems. Elsevier, pp. 177–212. https://doi.org/10.1533/9781845696825.1.177 Lynch, J.P., 2006. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest 38, 91–128. https://doi.org/10.1177/0583102406061499 Magalhães, F., Cunha, A., Caetano, E., 2012. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. Mechanical Systems and Signal Processing 28, 212–228. https://doi.org/10.1016/j.ymssp.2011.06.011 Maio, U.D., Greco, F., Leonetti, L., Pranno, A., Sgambitterra, G., 2020. Nonlinear analysis of microscopic instabilities in fiber-reinforced composite materials. Procedia Structural Integrity 25, 400–412. https://doi.org/10.1016/j.prostr.2020.04.045 Mansouri, M., Avci, O., Nounou, H., Nounou, M., 2015. A Comparative Assessment of Nonlinear State Estimation Methods for Structural Health Monitoring, in: Atamturktur, H.S., Moaveni, B., Papadimitriou, C., Schoenherr, T. (Eds.), Model Validation and Uncertainty Quantification, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series. Springer International Publishing, Cham, pp. 45–54. https://doi.org/10.1007/978-3-319-15224-0_5 Pascuzzo, A., Greco, F., Lonetti, P., Ammendolea, D., 2022. Dynamic fracture analysis in quasi-brittle materials via a finite element approach based on the combination of the ALE formulation and M − integral method. Engineering Failure Analysis 141, 106627. https://doi.org/10.1016/j.engfailanal.2022.106627 Pranno, A., Greco, F., Leonetti, L., Lonetti, P., Luciano, R., De Maio, U., 2022a. Band gap tuning through microscopic instabilities of compressively loaded lightened nacre-like composite metamaterials. Composite Structures 282, 115032. https://doi.org/10.1016/j.compstruct.2021.115032 Pranno, A., Greco, F., Lonetti, P., Luciano, R., De Maio, U., 2022b. An improved fracture approach to investigate the degradation of vibration characteristics for reinforced concrete beams under progressive damage. International Journal of Fatigue 163, 107032. https://doi.org/10.1016/j.ijfatigue.2022.107032 Reinhardt, H.W., 1984. Fracture Mechanics of an Elastic Softening Material like Concrete. http://resolver.tudelft.nl/uuid:7e908683-e816-4c4f 928f-03103ed2780e Salawu, O.S., 1997. Detection of structural damage through changes in frequency: a review. Engineering Structures 19, 718–723. https://doi.org/10.1016/S0141-0296(96)00149-6 Sebastian, W.M., 2001. Significance of Midspan Debonding Failure in FRP-Plated Concrete Beams. J. Struct. Eng. 127, 792–798. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(792) Yang, Y.B., Yang, J.P., 2018. State-of-the-Art Review on Modal Identification and Damage Detection of Bridges by Moving Test Vehicles. Int. J. Str. Stab. Dyn. 18, 1850025. https://doi.org/10.1142/S0219455418500256 Zhu, J., Zhang, Y., 2023. Damage detection for bridge structures under vehicle loads based on frequency decay induced by breathing cracks. Structure and Infrastructure Engineering 19, 793–809. https://doi.org/10.1080/15732479.2021.1979601
Made with FlippingBook Annual report maker