PSI - Issue 47

Hryhoriy Nykyforchyn et al. / Procedia Structural Integrity 47 (2023) 190–194 Hryhoriy Nykyforchyn, Olha Zvirko, Oleksandr Oliynyk et al. / Structural Integrity Procedia 00 (2023) 000 – 000

194

5

4. Concluding remarks Two main mechanisms of in-service degradation of rolled steels are considered: deformation strengthening (aging) and development of dissipated damages. Absorbed hydrogen during long-term operation can negatively effect on steels by the creating high hydrogen pressure in defects as a result of molecular hydrogen recombination causing dissipated damaging and delaminations between fibres along the rolling direction. The operational decrease in impact toughness as a brittle fracture resistance parameter can be considered as the key indicator of steel degradation, including under cyclic loading. For the rolled steels, the specimens cut in the short transverse direction are preferable for impact testing due to the orientation of micro-delaminations in the rolling direction. The anisotropy of brittle fracture resistance of rolled steels is more pronounced in operationally degraded material. References Beltrán - Zúñiga, M. , Rivas- López, D. , Dorantes-Rosales, H. , González -Zapatero, W., Ferreira- Palma, C., López -Hirata, V. , Hernández -Santiago, F., 2023. Fatigue life assessment of low carbon API 5L X52 pipeline steels retired from long-term service. Engineering Failure Analysis 143(A), 106769. Čamagić, I., Jović, S., Makragić, S., Živković, P., Burzić, Z., 2021. Influence of temperature and operation time on the fati gue strength and microstructure of welded joints of A-387Gr.B Steel. Materials Science 57(1), 86 – 93. Cauwels, M., Depraetere, R., De Waele, W., Hertelé, S., Verbeken, K., Depover, T., 2022. Effect of hydrogen charging on Charp y impact toughness of an X70 pipeline steel. Procedia Structural Integrity 42, 977 – 984. Chmelko, V., Garan, M., Šulko , M., Gašparík , M., 2020. Health and structural integrity of monitoring systems: The case study of pressurized pipelines. Applied Sciences, 10 (17), art. no. 6023. Dadfarnia, M., Sofronis, P., Brouwer, J., Sosa, S., 2019. Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen. International Journal of Hydrogen Energy 44(21), 10808 – 10822. Dziubyk, A.R., Voitovych, A.A., Student, O.Z., Dziubyk, L.V., Khomych, I.B., 2022. Evaluation of the technical state of reinforcement of the concrete-beam span of a bridge constructed at the end of the last century. Materials Science 57(4), 466 – 474. Kang, M., Aono, Y., Noguchi, H., 2007. Effect of prestrain on and prediction of fatigue limit in carbon steel. International Journal of Fatigue 29, 1855 – 1862. Kossakowski, P., 2013. Fatigue strength of an over one hundred year old railway bridge. Baltic Journal of Road and Bridge Engineering 8(3), 166 – 173. Lesiuk, G., Rymsza, B., Rabiega, J., Correia, J. A.F.O., De Jesus, A.M.P., Calcada, R., 2019. Influence of loading direction on the static and fatigue fracture properties of the long term operated metallic materials. Engineering Failure Analysis 96, 409 – 425. Nemchuk, O., Hredil, M., Pustovoy, V., Nesterov, O., 2019. Role of in-service conditions in operational degradation of mechanical properties of portal cranes steel. Procedia Structural Integrity 16, 245 – 251. Nykyforchyn, H., Tsyrulnyk, O., Zvirko, O., 2018. Electrochemical fracture analysis of in-service natural gas pipeline steels. Procedia Structural Integrity 13, 1215 – 1220. Nykyforchyn, H., Tsyrulnyk, O., Zvirko, O., Krechkovska, H., 2019. Non-destructive evaluation of brittle fracture resistance of operated gas pipeline steel using electrochemical fracture surface analysis. Engineering Failure Analysis 104, 617 – 625. Nykyforchyn, H., Tsyrulnyk, O., Zvirko, O., Hredil, M., 2020. Role of hydrogen in operational degradation of pipeline steel. Procedia Structural Integrity 28, 896 – 902. Pustovyi, V.М., Semenov, P.О., Nemchuk, О.О., Hredil, М.І., Nesterov, О.А., Strelbit skyi, V.V., 2022. Degradation of steels of the reloading equipment operating beyond its designed service life. Materials Science 57(5), 640 – 648. Syrotyuk, А.М., Babii, А.V., Barna, R.А., Leshchak, R.L., Marushchak, P.О., 2021. Corrosion -fatigue crack-growth resistance of steel of the frame of a sprayer boom. Materials Science 56(4), 466 – 471. Voloshyn, V.A., Zvirko, O.I., Sydor, P.Y., 2015. Influence of the compositions of neutral soil media on the corrosion cracking of pipe steel. Materials Science 50(5), 44 – 47. Vukelic, G., Vizentin, G., Ivosevic, S., Bozic, Z., 2022. Analysis of prolonged marine exposure on properties of AH36 steel. Engineering Failure Analysis 135, 106132. Wen, H., Li, Y., 2021. Study on stress distribution law and stress performance characteristics of multiple data mining for harbour portal crane detection. IOP Conf. Series: Earth and Environmental Science 631, 012039. Zhao, L.H., Feng, J.Z., Zheng, S.L., 2018. Effect of cyclic stresses below the endurance limit on the fatigue life of 40Cr steel. Strength of Materials 50(1), 2 – 10. Zvirko, O. I., 2021. In-service degradation of structural steels (A Survey). Materials Science 57(3), 319 – 330. Zvirko, O., 2022. Anisotropy of hydrogen embrittlement in ferrite-pearlitic steel considering operational degradation. Procedia Structural Integrity 42, 522 – 528. Zvirko, O., Mytsyk, B., Nykyforchyn, H., Tsyrulnyk, O., Kost’, Y., 2022a. Application of the various methods for assessment o f in-service degradation of pipeline steel. Mechanics of Advanced Materials and Structures. https://doi.org/10.1080/15376494.2022.2111732 Zvirko, O.I., Nykyforchyn, H.M., Tsyrulnyk, O.T., Voloshyn, V.A., Venhrynyuk, O.I., 2022b. In-service degradation of structural steels under cyclic loading. Materials Science 58(2), 222 – 228.

Made with FlippingBook - Online Brochure Maker