PSI - Issue 47

Marzak Zerouki et al. / Procedia Structural Integrity 47 (2023) 915–918 Marzak Zerouki et al. / Structural Integrity Procedia 00 (2019) 000–000

918

4

a

b

c

Fig. 3. Comparison of numerical and experimental results for temperature 25°C and strain rate 10 -4 s -1 : a) 0°, b) 45°, c) 90°.

6. Conclusion This study is focused on the experimental and numerical study of the mechanical behavior of an aluminum sheet at different strain rates and temperatures. The experimental results show the effect of strain rate and temperature on the behavior of the studied aluminum sheet. These effects are manifested by the variation of mechanical quantities like: tensile strength, elongation at break. The proposed extension of the GTN model to take into account the effect of anisotropy and strain rate gives a good capability to reproduce the experimental curves. References Aravas, N., 1987. Pressure-Dependent Plasticity Models, Int. J. Numer. Methods Eng. 24. L. Benabou, T.A. Nguyen-Van, Q.B. Tao, V.N. Le, M. Ould Ouali and H. Nguyen-Xuan. Methodology for DIC-based evaluation of the fracture behaviour of solder materials under monotonic and creep loadings. Engineering Fracture Mechanics (Elsevier). Vol. 239, 2020, 107285. https://doi.org/10.1016/j.engfracmech.2020.107285 Ben Chabane, N., Aguechari, N. , Ould Ouali, M., 2023. Study of the slant fracture in solid and hollow cylinders: Experimental analysis and numerical prediction, Frat. Ed Integrita Strutt. 17, 169–189. https://doi.org/10.3221/IGF-ESIS.63.15. A Benzerga and J. Besson. Plastic potentials for anisotropic porous solids. European Journal of Mechanics - A/Solids, Vol. 20(3), May 2001, Pages 397-434. https://doi.org/10.1016/S0997-7538(01)01147-0. Benzerga, A.A., Thomas, N. & Herrington, J.S. Plastic flow anisotropy drives shear fracture. Sci Rep 9 , 1425 (2019). https://doi.org/10.1038/s41598-018-38437-y. Ghosh, A. (2019) “In-plane anisotropy in deformation micro-mechanism of commercially pure titanium during monotonic tension and cyclic loading”, Frattura ed Integrità Strutturale, 13(48), pp. 585–598. doi: 10.3221/IGF-ESIS.48.57. Gurson, A.L. (1977) Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1—Yield Criteria and Flow Rules for Porous Ductile Media. Journal of Engineering Materials and Technology, 99, 2-15. https://doi.org/10.1115/1.3443401 Ould Ouali, M., 2018. Relevance of incorporating cavity shape change in modelling the ductile failure of metals, Math. Probl. Eng. https://doi.org/10.1155/2018/6454790. Tvergaard, V., Needleman, A., 1984. Analysis of the cup-cone fracture in a round tensile bar, Acta Metall. 32,157–169. https://doi.org/10.1016/0001-6160(84)90213-X. Pardoen, T., Hutchinson, J.W., 2000. Extended model for void growth and coalescence, J. Mech. Phys. Solids. 48, 2467–2512. https://doi.org/10.1016/S0022-5096(00)00019-3. R. Roubache, A. May, M. D. D. Boudiaf, S. E. Benhammouda, and N. Aït Hocine, 2023. Effect of Kaolin powder on the static and dynamic behavior of heterogeneous laminate constituted of functionally graded material layers. Journal of Composite Materials, Vol. 57(6). https://doi.org/10.1177/00219983221150 Zerouki, M., Ould Ouali, M., Benabou, L.,2020. Metallurgical Phase Transformation and Behavior of Steels Under Impact Loading, Metall. Mater. Trans. A. 51, 252–262. https://doi.org/10.1007/s11661-019-05527-z.

Made with FlippingBook - Online Brochure Maker