Issue 47
H. Leping et alii, Frattura ed Integrità Strutturale, 47 (2019) 65-73; DOI: 10.3221/IGF-ESIS.47.06
DOI: 10.1016/j.engfracmech.2017.04.043. [28] Labus, M. and Lempart, M. (2018). Studies of polish Paleozoic shale rocks using FTIR and TG/DSC methods, J. Petrol. Sci. Eng., 161, pp. 311-318. DOI: 10.1016/j.petrol.2017.11.057. [29] Plevova, E., Vaculikova, L., Kozusnikova, A., et al. (2016). Thermal expansion behaviour of granites. J. Therm. Anal. Calori., 123(2), pp. 1555-1561. DOI: 10.1007/s10973-015-4996-z. [30] Sun, Q., Zhang, W., Su, T., et al. (2016). Variation of Wave Velocity and Porosity of Sandstone after High Temperature Heating. Acta. Geophys., 64(3), pp. 633-648. DOI: 10.1515/acgeo-2016-0021. [31] Glover, P.W.J., Baud, P., Darot, M., et al. (1995). α/β phase transition in quartz monitored using acoustic emissions. Geophys. J. R. Astron. Soc., 120(3), pp. 775-782. DOI: 10.1111/j.1365-246X.1995.tb01852.x. [32] Becattini, V., Motmans, T., Zappone, A., et al. (2017). Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage, Appl. Energ., 203, pp. 373-389. DOI: 10.1016/j.apenergy.2017.06.025. [33] Vázquez, P., Shushakova, V. and Gómez-Heras, M. (2015). Influence of mineralogy on granite decay induced by temperature increase: Experimental observations and stress simulation, Eng. Geol., 189, pp. 58-67. DOI: 10.1016/j.enggeo.2015.01.026. [34] Siegesmund, S., Sousa, L. and Knell, C. (2018). Thermal expansion of granitoids, Environ. Earth. Sci., 77(2), pp. 41. DOI: 10.1007/s12665-017-7119-2.
73
Made with FlippingBook Publishing Software