Issue 47
D. Rigon et alii, Frattura ed Integrità Strutturale, 47 (2019) 334-347; DOI: 10.3221/IGF-ESIS.47.25
by considering the material and the test conditions analysed in the present paper, it can be concluded that the distribution of the Q parameter can be considered practically constant, at least from an engineering point of view, within a circular region centered at the notch tip and having a radius ranging from 0.53 to 0.83 mm.
R EFERENCES
[1] Dengel, D., Harig, H. (1980). Estimation of the fatigue limit by progressively - incresing load tests, Fatigue Eng. Matérials Struct., 3, pp. 113–128. [2] Luong, M.P. (1995). Infrared thermographic scanning of fatigue in metals, Nucl. Eng. Des., 158(2), pp. 363–376. DOI: 10.1016/0029-5493(95)01043-H. [3] La Rosa, G., Risitano, A. (2000). Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, Int. J. Fatigue, 22(1), pp. 65–73. DOI: 10.1016/S0142-1123(99)00088-2. [4] Curà, F., Curti, G., Sesana, R. (2005). A new iteration method for the thermographic determination of fatigue limit in steels, Int. J. Fatigue, 27(4), pp. 453–459. DOI: 10.1016/j.ijfatigue.2003.12.009. [5] Reifsnider, K.L., Williams, R.S. (1974). Determination of fatigue-related heat emission in composite materials, 14(12), pp. 479–485. DOI: 10.1007/BF02323148. [6] Plekhov, O., Palin-Luc, T., Saintier, N., Uvarov, S., Naimark, O. (2005). Fatigue crack initiation and growth in a 35CrMo4 steel investigated by infrared thermography, Fatigue Fract. Eng. Mater. Struct. Fract. Eng. Mater. Struct., 28(1–2), pp. 169–178. DOI: 10.1111/j.1460-2695.2005.00856.x. [7] Ummenhofer, T., Medgenberg, J. (2009). On the use of infrared thermography for the analysis of fatigue damage processes in welded joints, Int. J. Fatigue, 31(1), pp. 130–137. DOI: 10.1016/j.ijfatigue.2008.04.005. [8] Jones, R., Krishnapillai, M., Cairns, K., Matthews, N. (2010). Application of infrared thermography to study crack growth and fatigue life extension procedures, Fatigue Fract. Eng. Mater. Struct., 33(12), pp. 871–884. DOI: 10.1111/j.1460-2695.2010.01505.x. [9] Fargione, G., Geraci, A., La Rosa, G., Risitano, A. (2002). Rapid determination of the fatigue curve by the thermographic method, Int. J. Fatigue, 24(1), pp. 11–9. DOI: 10.1016/S0142-1123(01)00107-4. [10] Starke, P., Walther, F., Eifler, D. (2007). Fatigue assessment and fatigue life calculation of quenched and tempered SAE 4140 steel based on stress–strain hysteresis, temperature and electrical resistance measurements, Fatigue Fract. Eng. Mater. Struct., 30(11), pp. 1044–1051. DOI: 10.1111/j.1460-2695.2007.01174.x. [11] Jegou, L., Marco, Y., Le Saux, V., Calloch, S. (2013). Fast prediction of the Wöhler curve from heat build-up measurements on Short Fiber Reinforced Plastic, Int. J. Fatigue, 47, pp. 259–267. DOI: 10.1016/j.ijfatigue.2012.09.007. [12] Fan, J., Guo, X., Wu, C. (2012). A new application of the infrared thermography for fatigue evaluation and damage assessment, Int. J. Fatigue, 44, pp. 1–7. DOI: 10.1016/j.ijfatigue.2012.06.003. [13] Risitano, A., Risitano, G. (2013). Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters, Int. J. Fatigue, 48, pp. 214–222. DOI: 10.1016/j.ijfatigue.2012.10.020. [14] Meneghetti, G. (2007). Analysis of the fatigue strength of a stainless steel based on the energy dissipation, Int. J. Fatigue, 29(1), pp. 81–94. DOI: 10.1016/j.ijfatigue.2006.02.043. [15] Ellyin, F. (1997). Fatigue damage, crack growth, and life prediction, Chapman & Hall. [16] Meneghetti, G., Ricotta, M., Atzori, B. (2013). A synthesis of the push-pull fatigue behaviour of plain and notched stainless steel specimens by using the specific heat loss, Fatigue Fract. Eng. Mater. Struct., 36(12), pp. 1306–1322. DOI: 10.1111/ffe.12071. [17] Meneghetti, G., Ricotta, M. (2012). The use of the specific heat loss to analyse the low- and high-cycle fatigue behaviour of plain and notched specimens made of a stainless steel, Eng. Fract. Mech., 81, pp. 2–16. DOI: 10.1016/j.engfracmech.2011.06.010. [18] Meneghetti, G., Ricotta, M., Negrisolo, L., Atzori, B. (2013). A Synthesis of the Fatigue Behavior of Stainless Steel Bars under Fully Reversed Axial or Torsion Loading by Using the Specific Heat Loss, Key Eng. Mater., 577–578, pp. 453– 6. DOI: 10.4028/www.scientific.net/KEM.577-578.453. [19] Meneghetti, G., Ricotta, M., Atzori, B. (2016).The Heat Energy Dissipated in a Control Volume to Correlate the Fatigue Strength of Bluntly and Severely Notched Stainless Steel Specimens. Proceedings of the 21st European Conference on Fracture, ECF21. Catania, Italy, 2, pp. 2076–83. [20] Meneghetti, G., Ricotta, M. (2016). Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack, Fract. Struct. Integr., 0(35), pp. 172–181. DOI: 10.3221/IGF-ESIS.35.20. [21] Meneghetti, G., Ricotta, M., Rigon, D. (2017). The heat energy dissipated in a control volume to correlate the fatigue
346
Made with FlippingBook Publishing Software