Issue 47
P. Foti et alii, Frattura ed Integrità Strutturale, 47 (2019) 104-125; DOI: 10.3221/IGF-ESIS.47.09
1 I Pl. Strain
1 I Pl. Stress
[rad]
1
2 [°]
0.10 1.1550 1.1497 1.1335 1.1063 1.0678 0.9582 0.8137 0.7343 0.6536
0.15 1.0925 1.0880 1.0738 1.0499 1.0156 0.9173 0.7859 0.7129 0.6380
0.20 1.0200 1.0162 1.0044
0.25 0.9375 0.9346 0.9254
0.30 0.8450 0.8431 0.8366
0.35 0.7425 0.7416 0.7382
0.40 0.6300 0.6303 0.6301 0.6282 0.6235 0.6024 0.5624 0.5344 0.5013
0.30 1.0250 1.0216 1.0108 0.9918 0.9642 0.8826 0.7701 0.7058 0.6386
0
1
0.5000 0.5002 0.5014 0.5050 0.5122 0.5445 0.6157 0.6736 0.7520
15 30 45 60 90
23/24 11/12
7/8 5/6 3/4 2/3 5/8
0.9841 0.9090 0.8247 0.7311 0.9547 0.8850 0.8066 0.7194 0.8690 0.8134 0.7504 0.6801
120 135 150
0.7524 0.6867 0.6186
0.7134 0.6558 0.5952
0.6687 0.6201 0.5678
0.6184 0.5796 0.5366
7/12
I for pointed V-notches under plane stress and plane strain conditions.
Table 1 : Parameters 1
The elastic deformation energy in the control volume around the notch tip is given as follows:
R
( ) R A E W dA W r 1 0
( , )
( , )
( , )
2 W r
12 W r
rdrd
(15)
The integration field is symmetric with respect to the notch bisector; this condition sets to zero the contribution of 12 W . Therefore:
I
I
1
1
1
2
2
2
1
2
2
2
K R
K R
E E E
(16)
R
R
R
1
2
1
2
1
2
E
E
4
4
Where 1 I
2 I
and
are:
2
2
2
2
(1)
(1) (1)
(1) (1)
(1) (1)
(1) (1) zz rr
(1)
rr
r
I
d
(17)
2
2(1 )
rr
zz
zz
1
2
2
2
2
(2)
(2) (2)
(2) (2)
(2) (2)
(2) (2) zz rr
(2)
rr
r
I
d
(18)
2
2(1 )
rr
zz
zz
2
Their values, assessed for different geometries and stresses field, are reported in Tab. 1 as a function of Poisson’s ratio. The value of the area on which the integration is carried out is given by:
rdrd R
0 0 R
2
A
(19)
R
0
being expressed in radians. The averaged elastic deformation energy on the area results to be:
E
1
1
R R
1 e K R 2 1
2 e K R 2 2
1
2
2(
1)
2(
1)
A E
W
(20)
0
0
E
Being:
4 I
1
e
(21)
1 2
1
109
Made with FlippingBook Publishing Software