Issue 46
I. Čamagić et alii, Frattura ed Integrità Strutturale, 46 (2018) 371-382; DOI: 10.3221/IGF-ESIS.46.34
= , [1, 17], the approximate values for critical crack length,
and by introducing the values of conventional yield stress, R p0,2
a c , can be calculated.
Testing temperature. C
Specimen mark PM-1-1n PM-1-2n PM-1-3n PM-2-1n PM-2-2n PM-2-3n Specimen mark PM-1-1e PM-1-2e PM-1-3e PM-2-1e PM-2-2e PM-2-3e
Critical J-integral. J Ic, kJ/m 2
Critical stress intensity factor, K Ic, MPa m 1/2
Critical crack length, a c , mm
60.1 63.9 58.6 43.2 44.7 45.3
117.8 121.4 116.3
38.5 40.8 37.5 40.0 41.4 41.9
20
87.2 88.7 89.2
540
Table 8: Values of K Ic
notched specimens in new PM.
Testing temperature, C
Critical J-integral, J Ic , kJ/m 2
Critical stress intensity factor, K Ic , MPa m 1/2
Critical crack length, a c , mm
47.8 42.1 40.7 24.5 22.7 21.8
105.0
41.7 36.8 35.6 30.8 28.6 27.4
20
98.6 96.9 65.6 63.2 61.9
540
Table 9 : Values of K Ic
notched specimens in exploited PM.
The characteristic diagrams F- , and J- a for specimen taken out from the sample of new PM are given in Fig. 6 (left) for specimen marked as PM-1-1n tested at room temperature, and in Fig. 7 for specimen marked as PM-2-1n tested at the temperature of 540 C, [1].
16
250
PM-1-1n 20 o C
PM-1-1n 20 o C J Ic = 60,1 kJ/m 2
200
12
150
8
100 J, kJ/m 2
F, kN
J
4
Ic
50
0
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
, mm a, mm Figure 6 : F- δ (left) and J- Δ a (right) diagrams of specimen PM-1-1n.
377
Made with FlippingBook Online newsletter