Issue 45

O. Reut et alii, Frattura ed Integrità Strutturale, 45 (2018) 183-190; DOI: 10.3221/IGF-ESIS.45.16

      

  

  

x q

 



, ,

     

   

  

 

    

K x

n

 

 

i

in

d dx 

e

n 

x

 

  

x q

0

  

 

, ,

Finally, we derive the expression for the function’s transformation n k  

through the transformations of its jump and the

jump of its normal derivative

  

  

n

n

n  

 

P

P

sin

cos

cos

k

n

k

n k   

(10)

 k  

 2

2

t

1/ 2

D ERIVING THE FINAL FORMULA

T

he inverse Legendre’s transformation is applied to (10)

k n  

    

  cos n 

P

(11)

n k 

n

kn k

 

k n 

k

1/ 2

!

where

kn

k n 

!

Then the inverse Kantorovich-Lebedev transformation is applied to the obtained expression

0  

,    

  

K x

x q

      i    

sh

d

 

n

n

x

Bearing in mind that the expressions for the transformations of the wave potential jumps and its normal derivative have the following form

      

    

  



,

 

     

n

   

q

  

0  

K

n  n

  

i

d

 

  

  

n   

,

 

q

in the Fourier’s transformation domain, the wave potential has the following form

  

  K x K

  

0 0    

,    

  

sh

x q

k n  

n

i

i

P

sin

cos

 

n

kn k

 k  

 

 

2

x

2

1/ 2

   

   

  

  

  

  

n

n

n 

 

P

P

d d

cos

,

cos

,

k

k

n

q

q

The integral in the last formula is known [ 2.16.52(11), 20]

186

Made with FlippingBook Publishing Software