Issue 45
C. Huang et alii, Frattura ed Integrità Strutturale, 45 (2018) 108-120; DOI: 10.3221/IGF-ESIS.45.09
2 ( ) 0.0016 0.0118 0.005 f f f b = + −
(19)
2 ( ) 2.88 5.32 2.18 f f f c = + −
(20)
9
9
9 2
0 ( ) 1.11 10 5.92 10 f = +
−
(21)
2.7 10
f
f
The relationship between model parameters of Eqn. (10) and the fiber content characteristic parameter are as follow:
2
2 ( ) 0.615 0.884 0.401 f f f = + −
(22)
2
1 ( ) 97153.9 675179.3 305297 f f f = + −
(23)
2
2 ( ) 232.1 559.4 256.2 f f f = + −
(24)
−
−
−
4
4
4 2
( ) 4.5 10 5.9 10 a = −
+
(25)
2.37 10
f
f
f
2 ( ) 0.89 5.74 2.64 f f f b = + −
(26)
2 ( ) 191.1 1027 391.6 f f f c = + −
(27)
7
8
7 2
0 ( ) 4.01 10 1.75 10 f = +
−
(28)
8 10
f
f
By substituting Eqn. (14)-(21) and (22)-(28) into (9) and (10) respectively, the creep equations of present model of FRAC with consideration of fiber content characteristic parameter effect can be obtained: Load phase:
( )
( )
a
b
f
f
3
2
−
+
( )
t
t
c
t
−
t
f
−
1
t
1
e
3
2
=
+
+
+
(29)
( , t
)
f
0
( )
( )
( )
( )
1
f
1
f
2
f
0
f
Unload phase:
( )
( )
a
b
f
f
3
2
−
+
( )
t
t
c
t
( − − − t t t
)
0
0
f
0
0
0
−
t
(1
e
)
e
3
2
0
=
+
+
( , t
)
(30)
f
0
( )
( )
( )
1
f
2
f
0
f
( ) ( ) f f
E
2
where,
.
=
2
Taking derivative of t in Eqn. (29) and (30), differential constitutive equation of FRAC can be obtained, which is characterized by the present model and considered the influence of fiber content characteristic parameter: Load phase:
117
Made with FlippingBook Publishing Software