Issue 44

V. Reut et alii, Frattura ed Integrità Strutturale, 44 (2018) 82-93; DOI: 10.3221/IGF-ESIS.44.07

was constructed with the help of the matrix differential calculation, , 1, 2 i c i   is the Green’s matrix function which was constructed by the use of the matrix semi-infinite Fourier transformation. The components of the Green’s matrix function have the following form are known constants,   , G x  

 x   

  

   

x   

e

e

1

1

 x   

 x   

x   

x   

 G x  11

 x e 

 

 

x e 

e

e

,

 

2 1 

2

1

 x   

 

x   

 G x  12

 x e  

 x e 

 

,

2 1  

1

 x   

 

x   

 G x  21

 x e  

 x e 

 

,

2 1  

 x   

  

   

x   

e

e

1

1

 x   

 x   

x   

x   

 G x  22

 x e 

 

 

 

x e 

e

e

,

 

2 1 

2

After inverting the expression (18), and the summation of the weak-convergent integrals, the formulae for the displacements in the quarter plane have the following form

2

2

   

   

0  

   

x

x

1   

2

1

  

2

2

    '

2

2

ln x y       x y  

, u x y

ln

 

2

2

4 1  

1    

2

2

 

x y

x y

  

    

   

2 2

  

 

x y

2

   x 

1

x

d

  

2

2

2

1

x y    

2

2

 

x y



   

    

0  

   

  

  

y

x

y

x

  

  

y

y

2

1

1 2

    '

 

sign x arctg  

, v x y

arctg

2

2

2 2  

2

2

x

x

 

 

x y

x y

 

 

  

    

   

 

xy

x

xy

4

1

  

  



y

y

2

2

    x sign y 

 

arctg

d

2

  

2

2

2

2

2

x

1

 

 

x y

x y

2

2

 

x y



These expressions will describe the displacements in the quarter plane if the function   '   is found. To get it, the formulae for the displacements were put in the boundary condition   ( , 0) , 0 y x p x x a     . After changing the variables, the singular integral equation was derived

   

   

1

3 h x 

h

2 h x

1

 

 

 

1  

 

d q x  

(19)

  2

3

x   

x

x

x

0

 2 a 

 1   

2

3

2

4

here     

,    ,   q x is the known function. h

'   

 

h

h

,

,

 

1

2

3

2

91

Made with FlippingBook Learn more on our blog