Issue 44
V. Reut et alii, Frattura ed Integrità Strutturale, 44 (2018) 82-93; DOI: 10.3221/IGF-ESIS.44.07
0,
,
,
y
u y
v y
u a y
v a y
(1)
0, 0,
0,
0,
0,
0
( , ) x u x y u x y , ,
( , ) y v x y u x y are the displacements that satisfy the Lame’s equilibrium equations ,
here
2
2
2
u x y
u x y
v x y x y u x y x y
( , )
( , )
( , )
1 1 1 1
2
0
2
2
1
x
y
(2)
2
2
2
v x y
v x y
( , )
( , )
2
( , )
0
2
2
1
x
y
where is the Muskchelishvili’s constant. Two cases of the boundary conditions on the short edge are considered. In the first case (Fig. 1) the semi-strip is loaded at the edge 1 0, 0 y x a 1 ( , 0) , ( , 0) 0, 0 y xy x p x x x a (3) 3 4
1 0, y a x a
and conditions of the slide contact are executed at the segment
( , 0) 0,
( , 0) 0, xy x
a x a
v x
(4)
1
Figure 1 : First case: geometry and coordinate system of the problem.
Figure 2 : Second case: geometry and coordinate system of the problem.
0, 0 y x a
In the second case (Fig. 2) the semi-strip is loaded at the edge
( , 0) x p x
( , 0) 0, x
x a
(5)
,
0
y
xy
, c x c y B the crack is situated
At the segment 0
1
, u x B u x B v x B v x B 0 , , 0 ,
0 0
u x B ,
x
c
x c x c
0,
1
0
1
(6)
x
v x B ,
c
0,
2
0
1
84
Made with FlippingBook Learn more on our blog