Issue 44

X.-P. Zhou et alii, Frattura ed Integrità Strutturale, 44 (2018) 64-81; DOI: 10.3221/IGF-ESIS.44.06

When Eq.(32) is expressed by the short-term uniaxial compressive strength  c

, Eq.(32) can be rewritten as

   

   

 c

s

f

(0)

3

iu

  

  

m n

1 3

2

3

iu f t

0 ( )

(33)

2

2

   

   

   

   

 c

 c

 c

s

f

s

f

s

f

(0)

(0)

(0)

iu

iu

iu

  

  

m n

0

1 3

2

3

iu f t

iu f t

iu f t

0 ( )

0 ( )

0 ( )

where  c

is the short-term uniaxial compressive strength.

C OMPARISON WITH THE EXPERIMENTAL RESULTS

T

he Lode stress angle is defined as follows:

 

  

  

 2 (

)

     0 30

0 30 )

3

1 2

  arctan

(

(34)

3(

)

1 2

 expressed by the first invariant 1

I of stress tensor and the second invariant of deviatoric stress

The stress tensor ij

tensor J 2

can be written as follows:

         I I 1 1 3

2 3

      

     

sin(

)

              1 2

2

 sin( ) 

(35)

J

3

2

3

    I 1

2 3

3

sin(

)

3

  

Micromechanics-based three-dimensional long-term strength criterion (32) can be expressed by the first invariant I 1 of stress tensor and the second invariant of deviatoric stress tensor J 2 , the following expression can be obtained         q f pq f F f f q pq f p q f f p ' ' ' 1 4 3 ' 2 ' 2 ' 2 ' 2 3 5 7 6 0 (36) where

4 cos

 

 3 2

2

'

 

 

 3 2 cos n

 m n

f

sin

1

3 4 1 3

f        f

2

'

 m n

cos

2

 n m n 

'

 2 3                m m n n m mn n n 3 6 2 2 6 2 2 2   

 

s

cos 2

3 2 2

sin 2

cl

3

2 3

 m n s 

 3 2

'

 

 

              f 7 '       s f f f 4 ' 5 6 2 ' 1 3 

 m n

n

3

2

cos

sin

cl

2

 m n s

 c

l

 3 2

2

 

 

 3 4 cos n

 m n

 c

si

n

l

2 2

m n

s

cl

75

Made with FlippingBook Learn more on our blog