Issue 44
X.-P. Zhou et alii, Frattura ed Integrità Strutturale, 44 (2018) 64-81; DOI: 10.3221/IGF-ESIS.44.06
When Eq.(32) is expressed by the short-term uniaxial compressive strength c
, Eq.(32) can be rewritten as
c
s
f
(0)
3
iu
m n
1 3
2
3
iu f t
0 ( )
(33)
2
2
c
c
c
s
f
s
f
s
f
(0)
(0)
(0)
iu
iu
iu
m n
0
1 3
2
3
iu f t
iu f t
iu f t
0 ( )
0 ( )
0 ( )
where c
is the short-term uniaxial compressive strength.
C OMPARISON WITH THE EXPERIMENTAL RESULTS
T
he Lode stress angle is defined as follows:
2 (
)
0 30
0 30 )
3
1 2
arctan
(
(34)
3(
)
1 2
expressed by the first invariant 1
I of stress tensor and the second invariant of deviatoric stress
The stress tensor ij
tensor J 2
can be written as follows:
I I 1 1 3
2 3
sin(
)
1 2
2
sin( )
(35)
J
3
2
3
I 1
2 3
3
sin(
)
3
Micromechanics-based three-dimensional long-term strength criterion (32) can be expressed by the first invariant I 1 of stress tensor and the second invariant of deviatoric stress tensor J 2 , the following expression can be obtained q f pq f F f f q pq f p q f f p ' ' ' 1 4 3 ' 2 ' 2 ' 2 ' 2 3 5 7 6 0 (36) where
4 cos
3 2
2
'
3 2 cos n
m n
f
sin
1
3 4 1 3
f f
2
'
m n
cos
2
n m n
'
2 3 m m n n m mn n n 3 6 2 2 6 2 2 2
s
cos 2
3 2 2
sin 2
cl
3
2 3
m n s
3 2
'
f 7 ' s f f f 4 ' 5 6 2 ' 1 3
m n
n
3
2
cos
sin
cl
2
m n s
c
l
3 2
2
3 4 cos n
m n
c
si
n
l
2 2
m n
s
cl
75
Made with FlippingBook Learn more on our blog