Issue 44

M. Ciavarella et alii, Frattura ed Integrità Strutturale, 44 (2018) 49-63; DOI: 10.3221/IGF-ESIS.44.05

cracked material. We then proceed to illustrate, from the Atzori and Lazzarin criteria [5, 16], some simple estimates for the generic Wöhler curve of notched specimen.

R EFERENCES

[1] Fleck, N.A., Kang, K.J. and Asbhy, M.F., (1994). Overview 112: The cyclic properties of engineering materials. Acta metal. mater. 42 (2), pp. 365-381. [2] Carpinteri, A. and Karihaloo, B.L., 2003. Size-Scale Effects, Engng Fract Mech, 70(16) pp. 2255. [3] Bazant, Z. P. (1999). Size effect on structural strength: a review, Archive of Applied Mechanics, 69, pp. 703-725. [4] Smith, R.A. and Miller, K.J. (1978). Prediction of fatigue regimes in notched components. Int J of Mech Sci, 20, pp. 201-206. [5] Atzori, B. and Lazzarin, P. (2001). Notch sensitivity and defect sensitivity under fatigue loading: Two sides of the same medal, Int J of Fract, 107(1), pp. L3-L8 [6] Atzori, B., Lazzarin, P. and Meneghetti, G. (2003). Fracture mechanics and notch sensitivity. Fatigue & Fracture of Engineering Materials & Structures, 26(3), pp. 257-267. [7] Ciavarella, M. and Monno, F. (2006). On the possible generalizations of the Kitagawa-Takahashi diagram and of the El Haddad equation to finite life. International Journal of Fatigue, 28(12), pp. 1826-1837. [8] Pugno, N., Ciavarella, M., Cornetti, P. and Carpinteri, A. (2006) A generalized Paris' law for fatigue crack growth. Journal of the Mechanics and Physics of Solids, 54(7), pp. 1333-1349. [9] Ciavarella, M. (2011). Crack propagation laws corresponding to a generalized El Haddad equation. International Journal of Aerospace and Lightweight Structures (IJALS) 1, no. 1. [10] Ciavarella, M. (2012). A simple approximate expression for finite life fatigue behaviour in the presence of "crack-like" or "blunt" notches. Fatigue & Fracture of Engineering Materials & Structures, 35(3), pp. 247-256. [11] Ciavarella, M. and Papangelo, A., (2018) On the distribution and scatter of fatigue lives obtained by integration of crack growth curves: does initial crack size distribution matter? Engineering Fracture Mechanics, in press [12] Ciavarella, M., P. D’Antuono and Papangelo, A. (2018). On the connection between Palmgren-Miner’s rule and crack propagation laws. Fatigue & Fracture of Engineering Materials & Structures, DOI: 10.1111/ffe.12789 [13] ISO 6336:1996 Calculation of load capacity of spur and helical gears -- Part 2: Calculation of surface durability (pitting) Part 3: Calculation of tooth bending strength. [14] Sendeckyj, G.P. (2001). Constant life diagrams — a historical review, Int J of Fatigue, 23(4), pp. 347-353. [15] El Haddad, M.H., Topper, T.H. and Smith, K.N. (1979). Prediction of Non-Propagating Cracks. Engng Fract Mech 11, pp. 573-584. [16] Atzori, B. and Lazzarin, P. (2000). Analisi delle problematiche connesse con la valutazione numerica della resistenza a fatica, AIAS National Conference, Lucca Italy, also Quaderno AIAS n.7, pp.33-50. [17] Asbhy, M.F. (1989). Overview 80: The engineering properties of materials: Acta metal., 37 (5), pp. 1273-1293 [18] Asbhy, M.F. (1992). Materials selection on mechanical design, Pergamon, Oxford, UK.

63

Made with FlippingBook Learn more on our blog