Issue 42

J.-M. Nianga et alii, Frattura ed Integrità Strutturale, 42 (2017) 280-292; DOI: 10.3221/IGF-ESIS.42.30

H OMOGENIZED LOCAL PROBLEM IN THE PERIOD Y

L

et us choose the fields 1

1 v and  as:

 

u u

1

1

1

 

 

( , ) v x y u x y  ( , )

( ) w y u x y  ( , )

(65)

( ); 0         1; u u u D w V  

u

*

YC

 

w y 

1 

1

1

 

 

( , ) x y

( , ) x y

( , ) x y

( )

(66)

( ); 0         1; D w V     

*

YC

where ( ) D  represents the set of the infinitely derivable functions with compact support in  .

When we take (64) and (65) into account, then the comparison of (58) and (59) with (60) and (61) respectively, gives the following equations,

   

u

1

0 k u u x y  ( ); 0         ijkl l l u u a D                    ( ); 0         ij j j x y D                              1 k 0 1

   

   

   

(  

u

w u

1

)

0

1

   

   

(  

     

w u

)

j

j

u

u

i

i

dy

e

dy

0

ijk

(67)

y

x y

y

i

k

k

j

1

   

   

   

0 k u u x y         1 k

1

1

   

(   w

(   w

)

)

dy

e

dy

0

ikl

(68)

y

y

i

l

l

i

1

Therefore, we locally obtain, respectively:

u

1

   

   

   

   

(  

u

w u

0 k u u x y     

1 k

1

)

0

1

   

   

   

   

(  

w u

     

)

j

j

u

u

*

i

i

0;   

a

e

w V

(69)

ijkl

ijk

YC

y

x y

y

l

l

i

k

k

j

  

   

  

   

   

   

0 k u u x y         1 k

0

1

1

1

   

x y        

(   w

(   w

)

)

*

0;   

e

w V

(70)

ij

ikl

YC

y

y

j

j

i

l

l

i

and the local homogenized problem ( LHP ) in Y, then follows:

* inV V     u YC

u

1 1 ( , ) u

*

such that we obtain, for given 0

0

( ) ( ) u x and x  :

Problem (LHP): Find

YC

    

u

1

   

   

   

   

(  

u

w u

0 k u u x y 

1 k

1

)

0

1

   

   

   

   

   

(  

x y      

w u

)

j

j

i

i

a

dy

e

dy

0

ijkl

ijk

y

y

Y

Y

(71)

l

l

i

k

k

j

u

u

*

  

w V

YC

and

288

Made with FlippingBook Ebook Creator