Issue 42

J.-M. Nianga et alii, Frattura ed Integrità Strutturale, 42 (2017) 280-292; DOI: 10.3221/IGF-ESIS.42.30

u

*

*

inV V 

( , ) u 

Problem ( FVP  ): Find

such that:

u

*

( , ( ,                  ) ( , ) ( , d u  ) 0 ) 0 a u v u b v u v V c       

(46)

*

V

In order to study the asymptotic behavior of the solution when  tends to zero, we use the classical following expansions, both for the unknown and the test functions:

0

1

2 2

( ) u x u x u x y    ( ) ( , )

( , ) ... 

u x y

(47)

 

0

1 

2 2  

( ) x   

( , ) ... x y 

( ) x

( , ) x y

(48)

0

1

2 2

( ) v x v x v x y    ( ) ( , )

( , ) ... 

v x y

(49)

 

0

1 

2 2  

( ) x   

( , ) ... x y 

( ) x

( , ) x y

(50)

Introducing the following spaces:  ( ); u YC i i

1

( ); C V v v v H Y Y periodic    

(51)

( ); YC V v v v V v       ; u u YC i

0

(52)

 

u

u

*

( ); i V v v v V v N on C     ; 0 YC i YC i

(53)

* YC V v v v V v       * ( ); ; u u YC i

0

(53)

 

1

;    

( ); C H Y Y periodic 

V

(54)

YC

V 

;        ; V

0

(55)

YC

YC

 

  

*

;    

V

V

;

0

(56)

YC

YC

V 

*

*

;    

V

;

0

(57)

YC

YC

Comparing (47)-(50) with (46), we get the following relations:

            

0 0

1 1

0 0

   

   

(  

(  

(      u j

v u

v u

v u

0 k

0 k

1 k

)

)

)

 

 

u

u x

j

j

j

j

j

dx a 

    

a

dx a

dx

ijkl

ijkl

ijkl

x x 

y

y

x

l  

l

i

l

i

i

1 1

   

   

   

  

1 k (    u j

v u

0 0

1 1

)

0

0

(  

(  

v u

v u

 

 

)

)

j

i

i

i

i

dx e 

a

dy

e

dx

ijkl

ijk

ijk

x x 

y  

y

y

x

(58)

l

i

k

j

k

j

   

   

0 0

1 1

1    

1

(  

v u

v u

(

)

)

0 1     1 0; , v v ( ( )) H

3

i

i

i

i

dx e 

e

dy

k        y

ijk

ijk

0

y   y

x

j

k

j

286

Made with FlippingBook Ebook Creator