Issue 41

Ch. F. Markides et alii, Frattura ed Integrità Strutturale, 41 (2017) 396-411; DOI: 10.3221/IGF-ESIS.41.51

In addition, with m =3,5,7,9,…,   2 2 1 m t 

m

m

m

     

2 

    

a

t

b

t

a

t

b

1

1

1

m

m

m

m

2

2

2

A

i



  1 





  1 



m

m

m

m

m

m

m

m

m

    

    

2 

2 

t

t

t

t

t

t

t

t

1

1

1

1

1

1

1

1

1

2

1

2

1

2

1

2

(12)

m

m

m

m

    

    

1 

1 

t

a

t

b

t

a

t

b

1 m

1

1

1

m

m

m

m

1

1

1

1

B

i



  1 





  1 



m

m

m

m

m

m

m

m

    

    

2 

2 

t

t

t

t

t

t

t

t

1

1

1

1

1

1

1

1

1

2

1

2

1

2

1

2

where

 

1  

t

i

i

1

(13)

1,2

1,2

1,2

and , , m m m m a b a b     are the real and imaginary parts of the following constants (as coefficients of the Fourier series representation of the boundary conditions on L ): ,

 

1    

a b

sin 2 cos 2 

o 

o 

P R

sin 4

1

 

  

3

o 

i

2

c

o

6           i 

 

o 

 

e

sin 2

sin 2

o

o

2

2

4

2sin sin 4 2cos 2 sin 4 sin 2 cos4 2 3 o o o o o        

3

2 i o 

 

o 

e

  

 

o 

i

2

e

2

o 



2sin

  

1           i 

a b

o 

sin 1 m 

sin 1 m 

o 

  

P R

1

m

c

(14)

2

m m   

m

2

1

1

o 

2sin

m



o   

1   o 

1 cos 2 sin 1 m 

2sin 2 cos 

m

m

   1 i m  

o 

o

o

1 cos   

m e 

2

 m  

4

1

 

1        c P R 

sin 1 m 

o   

o 

sin 1 m

1

m

5,7,...

 

2

i

m m   

m

2

1

1

o 

2sin

 



o   

1   o 

1 cos 2 sin 1 m 

2sin 2 cos 

m

m

i m 

 1 o 

 m e 

o

o

1 cos   

2

 m  

4

1

 

What is more, and again for m =3,5,7,9,…,

m

m

    

    

1

  

     

  

 

2

2

2

2

2

2

1,2 z R    1

1,2 1,2 z R     1 z

(15)

P z

z

1 ,2 1,2 m m

1,2

1,2

1,2

m

m

1 R i 

1,2

Finally,

   0 x

  

   

   0

   0 xy 

 

 

 

  

1 1 b b Ri

1 1 a a R

1 1 a a Ri

1 1 b b R

(16)

,

,

y

indicate constant stresses throughout the disc cross-section [20], where the respective coefficients of Fourier series representation of the boundary conditions on L read as [14]:

2 i o 

  

   

1    

a b

2 sin 2  

o 

sin 2 cos 2 

o 

c P R

e

  

  

1

o 

i

2

o

o

o 

o 

 

2          i 

 

(17)

e

2

sin 2

sin 2

o

o

2

2

2

o 

o 

2sin

2sin

1

400

Made with FlippingBook Ebook Creator