Issue 39
S. Seitl et alii, Frattura ed Integrità Strutturale, 39 (2017) 100-109; DOI: 10.3221/IGF-ESIS.39.11
Dimensions of specimens for all four geometry variants are summarized in Tab. 1 (dimensions common to all variants) and in Tab. 2, there are unique dimension of all studied variants (I, II, III and IIIb) with angles.
Width
Breadth B [mm]
Height H [mm]
Load position
Groove depth
W [mm]
h [mm]
d n
[mm]
150
150
130
8
20
Effective width
Groove width
Load position
Eccentricity
W eff
f [mm]
i [mm]
e [mm]
[mm]
142
40 20 Table 1 : Nominal variant dimensions and test geometry parameters, taken from [29]. 10
Depth of bottom notch
Initial crack length
Relative crack length
Geometry variant Specimen set
Depth of top notch
Wedge angle
Length
Span
α = a/W eff [-]
L [mm]
S [mm]
c [mm]
c 1
a [mm]
2 α w
[º]
[mm]
I, α 1 I, α 2
30 30 15 15 15
150 150 300 300 300 600 600 600 600 600
0 0
13 30 15 31 54 13 35 54
- - - - - - - -
25 42 27 43 66 25 47 66 53 81
0.18 0.30 0.19 0.30 0.46 0.18 0.33 0.46 0.37 0.57
II, α 1 II, α 2 II, α 3 III, α 1 III, α 2 III, α 3
270 270 270 540 540 540 540 540
15, 30 15, 30 15, 30 15, 30 15, 30
IIIb, α 1 IIIb, α 2
8 9
53 81
Table 2 : Nominal variant dimensions and test geometry parameters, taken from [29].
T HEORETICAL BACKGROUND
A
ccording to the two-parameter fracture mechanics approach which uses T -stress as a constraint parameter [1, 11, 13, 24, 34], the stress field around the crack tip of a two-dimensional crack embedded in an isotropic linear elastic body subjected to normal mode I loading conditions is given by the following expressions [33]:
K
2 3 sin 2 3 sin
2 2
cos
sin 1
T
I
xx
2
2
r
(1)
K
cos
sin 1
I
yy
2
2
r
K
2 3 cos
cos
sin
I
xy
2
2
2
r
102
Made with FlippingBook Publishing Software