Issue 38

N. Vaysfeld et alii, Frattura ed Integrità Strutturale, 38 (2016) 1-11; DOI: 10.3221/IGF-ESIS.38.01

    

1 

1 

2 

  

c

c

x c

c

x

1 

1 

1 

1 

c

с

3,1

3,2

3,1

3,2

    

2

c

d

1

2

2

2

2

 2 2

x     x  

x

2

 

 

 

 

x

x

x

x

2

2

2

1

1

(13)

 

1 

 1 1 

 x c

 1 1 

 

 

c

x

  

   K x d r x ,    

4

4

  

x    1

d

,

1

3

3

  

x    2 

x

2

1

 1   

a

here     

,     K x r x , ,   are the known regular functions, i

c i , 1, 4   are shown in the Application B.

  

 

2

The Eq. (13) is the partial case of the equation with two fixed singularities considered [21]

m k 

  m k

  y

 

  y

1

1

n

c

x y ,

x

x

1

1

c

1

k    2 

  A x c  

  x

1

dy

dy

0

i 

i 

y x 

m k 

m k k 

k

1

y

y

xy

1

1

1

k

k

0

1

1

1 

   

 

y dy f x 

, 0 Re 

m k 

K x y ,

k

1

which can be rewritten as

1 

   

  A x c  

 

 

 

 

 

 

x c S x N x N x K x K x y ,         

y dy f x 

0

1 1

1

1

1

1

where

m

  y

1

n

x

1

k

c

k   2 

 

  c x 1, 1 lim ,

N x   1

   

dy c ,

c

,

k k

k

m kk 

i 

 

x

1 1

k

1

   

 

y

x y

1

2

k

0

1

The symbol of the singular integral Eq. (13) was constructed, which has the following form, where all designations correspond to the designations in [21]

  m k 

      

2

  

  

c n 

c S 1

R

,

k k 

2 ,

     

A A

  

   ,  

k

0

,  

A

(14)

  m k 

2

  

  

c n 

,    

c S 1

R

,

k k 

2 ,

k

0

    z , , ,     

  p S z cth i 

  

   

1 / , 

z   , 

,

  m k 

k

   k 1   

 1 ,

iz  

  

n

m

,

k

k

k

 

k

,

k

sh i

z

6

Made with FlippingBook Publishing Software