Issue 38
N. Vaysfeld et alii, Frattura ed Integrità Strutturale, 38 (2016) 1-11; DOI: 10.3221/IGF-ESIS.38.01
y v x y u x y ( , ) , are the displacements which satisfy the Lame’s equations. The Lame’s
x u x y u x y ( , ) , ,
here
equations are written in the following form [24]
2
2
2
u x y
u x y
v x y x y u x y x y
( , )
( , )
( , ) 0
*
0
2
2
x
y
(3)
2
2
2
v x y
v x y
( , )
( , )
( , ) 0
*
0
2
2
x
y
1
0 * , through the Muskchelishvili constant
0
*
0
where
. After the expression of the constants
,
1
1 2
3 4
, one obtains the system (3) in the another form
2
2
2
u x y
u x y
v x y x y u x y x y
( , )
( , )
( , )
1 1 1 1
2
0
2
2
1
x
y
(4)
2
2
2
v x y
v x y
( , )
( , )
2
( , )
0
2
2
1
x
y
The boundary conditions on the semi-strip’s edge are reformulated with the terms of the displacements
, 0
v x , 0
u x
1
0
G
p x
x a
(5)
2
, 0
x
y
, 0
, 0
u x
v x
0, 0
x a
(6)
y
x
One needs to solve the boundary value problem (2), (4)-(6) to estimate the stress state of the semi-strip.
T HE GENERAL SOLVING SCHEME OF THE PROBLEMS ON THE SEMI - STRIP STRESS STATE ESTIMATION
T
he Fourier’s transformation is applied to the system of Lame’s equation and to the boundary conditions by the scheme u x y u x y dy v x y v x y 0 ( ) cos , ( ) sin , (7)
with the inverse formula
u x y v x y , ,
0
u x v x
( ) cos ( ) sin
y
2
d
(8)
y
The initial problem has the form after this
3
Made with FlippingBook Publishing Software