Issue 37

D. Angelova et alii, Frattura ed Integrità Strutturale, 30 (2017) 60-68; DOI: 10.3221/IGF-ESIS.37.08

400 Emery polished surface

Ground surface

Mirror finished surface

Steel

Unfretted

Fretted in air

Unfretted

Fretted in air

304

192

293

369

330

416

316

182

294

301

316L

172 285 Table 3 : Micro Vickers Hardness of fretted surface (Indentation load = 0.245N) 271 290 283

Formation of martensite due to fretting is observed in Steel 304 and not in 316L; it is found as well that hydrogen absorption in 304 contributes to decrease of fretting fatigue strength through: (a) hardening; and (b) formation of martensite due to fretting [3].

200

100

SUS 304 in air SUS 316 in air SUS 316L in air

0

Fretting fatigue limit (MPa)

0 100 200 300 400 500 Vickers hardness HV

a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 100 120 140 160 180 200 220 240 Stress amplitude,  a (MPa) Tangential force coefficient, ф . H2 Air H2 Air H2 Air Ground Polished SUS 316L SUS 304 SUS 316L SUS 304 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 100 120 140 160 180 200 220 240 Stress amplitude,  a (MPa) Tangential force coefficient, ф . H2 Air H2 Air H2 Air Ground Polished SUS 316L SUS 304 SUS 316L SUS 304 b) Figure 4 : Fretting fatigue [3]: a) Dependence “Fretting fatigue limit – Vickers hardness”; b) Tangential force coefficient.

65

Made with FlippingBook Annual report