Issue 37
D. Angelova et alii, Frattura ed Integrità Strutturale, 30 (2017) 60-68; DOI: 10.3221/IGF-ESIS.37.08
400 Emery polished surface
Ground surface
Mirror finished surface
Steel
Unfretted
Fretted in air
Unfretted
Fretted in air
304
192
293
369
330
416
316
182
294
301
–
–
316L
172 285 Table 3 : Micro Vickers Hardness of fretted surface (Indentation load = 0.245N) 271 290 283
Formation of martensite due to fretting is observed in Steel 304 and not in 316L; it is found as well that hydrogen absorption in 304 contributes to decrease of fretting fatigue strength through: (a) hardening; and (b) formation of martensite due to fretting [3].
200
100
SUS 304 in air SUS 316 in air SUS 316L in air
0
Fretting fatigue limit (MPa)
0 100 200 300 400 500 Vickers hardness HV
a)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 100 120 140 160 180 200 220 240 Stress amplitude, a (MPa) Tangential force coefficient, ф . H2 Air H2 Air H2 Air Ground Polished SUS 316L SUS 304 SUS 316L SUS 304 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 100 120 140 160 180 200 220 240 Stress amplitude, a (MPa) Tangential force coefficient, ф . H2 Air H2 Air H2 Air Ground Polished SUS 316L SUS 304 SUS 316L SUS 304 b) Figure 4 : Fretting fatigue [3]: a) Dependence “Fretting fatigue limit – Vickers hardness”; b) Tangential force coefficient.
65
Made with FlippingBook Annual report