Issue 32
I. Telichev, Frattura ed Integrità Strutturale, 32 (2015) 24-34; DOI: 10.3221/IGF-ESIS.32.03
Using the expansion of the function u 2
(ξ) in terms of Lagrange interpolation polynomials over the Chebyshev’s nodes we
obtain the expression for the function * * 2 2 ( ) g x : 1 * * * 1 1 ( ) (1) N g x g u 2 2 2 2 k
1 N
r k r T T
1 2
d
(6)
N
2 1 k
1
r
1
* 2
x
After integration
1
d
* 2
arccos x
2
1
* 2
x
and
1
T
1
* 2
1 r
d
sin r arccos x
r
2
* 2
x
we get
1
1
1 N
N
* 2
* 2
k
k T sin r arccos x r
* * 2 2 g x g ( )
* 2
(1)
u
arccos x
(7)
2
2
N
r
k
r
1
1
Analogously we obtain the expressions for * * 0 0
( ) g x and * * 1 1
* 0 0 / , x x l x L and 0 0 0
* 1 / , x x l x L : 1 1 1 1
( ) g x at
1
1
1 N
N
* 0
* 0
g x g l 0 0 0 0
k
k T sin r arccos x r
* * 0 0 g x g ( )
* 0 (1)
l
u
arccos x
/
2
(8)
0
0
N
r
k
r
1
1
1
k T sin r arccos x 1 2 r
1 N
N
* 1
* 1
k
g x g l 1 1 1 1
* * 1 1 g x g ( )
* (1)
u
arccos x
(9)
l
/
1
1
1
N
r
k
r
1
1
From Eq. (2) in the symmetric case we have ' ' ' v v v x x x
' g x
1 æ
(10)
G
4
v v v( ) 2 x
(1 ) ( ) æ g x
C , where n is a segment number. The constants of
Integrating we obtain the relation:
n
n
G
4
integration C n
are determined by displacement at the end of the segment:
2 C
0
2
2 G æ g l æ g l
(1 ) 4 (1 )
C
1
1
(1 ) æ
1 2 g l
2
1
C
C
1 g l
0 Thus the crack opening displacement (COD) for the segment L n 1 4 4 G G
is defined as following
* * n n n æ l g x
(1 )
( )
* ( ) 2v( ) x *
COD x
C
2
(11)
n
n
n
G
2
Since for the plane stress (1 ) 2 4 æ G E
* ( ) n COD x takes the form
, the expression for
u
n Y
l
4
S
1
1 N
N
* n
* n
k T sin r arccos x r
n k
* ( ) 2 COD x C
] , 0,1,2 n
arccos x
(12)
[
2
n
n
EN
S
r
k
r
1
1
Y
30
Made with FlippingBook Ebook Creator