Issue 29
F. Tornabene et alii, Frattura ed Integrità Strutturale, 29 (2014) 251-265; DOI: 10.3221/IGF-ESIS.29.22
Lagrange polynomials (PDQ)
Lagrange trigonometric polynomials (HDQ)
S r
S r
r
j
N
,
0,2 ,
1,2,...,
L r
l r
j
j
r r
r
, , j
N
,
1,2,...,
1 j
1 j
j
j
j
S r
sin
r r L r
2
j
N
N
1 , j
r r
L r
r r L r
r r
r r
N
N
1 j
j
k
k
j
k
S r
S r
sin
,
sin
k
k
1, k j k
1
2
2
k
1, k j k
1
Jacobi polynomials (Jac)
Legendre polynomials (Leg)
2 j
j
1
j
1
j
d
j
d
, j
j
j
P r
r
1
J r
r
r
1
1
2 ! 1 1 j j r
j
j
j
2 ! j
j
j
dr
j dr
r
r
j
N
1,1
1,2,...,
r
j
1,2,..., , N
1,1 ,
,
1
Chebyshev polynomials (I kind) (Cheb I)
Chebyshev polynomials (II kind) (Cheb II)
r
sin 1 arccos sin arccos j r
cos arccos , j r r
j T r j
1,1 , j
N
1,2,...,
U r
r
1,1 , j
N
,
1,2,...,
j
j
Chebyshev polynomials (III kind) (Cheb III)
Chebyshev polynomials (IV kind) (Cheb IV)
r
r
2 1 arccos j
2 1 arccos j
sin
cos
2
2
V r
W r
r
1,1 , j
N
,
1,2,...,
r
1,1 , j
N
,
1,2,...,
r
r
j
j
j
j
arccos
arccos
sin
cos
2
2
Power or monomial polynomials (Power)
Exponential polynomials (Exp)
j M r r r , j
j E r e
1 , j r
, , j
N
1,2,...,
r
, , j
N
1,2,...,
j
j
Hermite polynomials (Her)
Laguerre polynomials (Lague)
j
d
1
2 r
j
d
1
, r e r j r
G r
0, , j
N
j r
1,2,...,
2
H r
e
, e r
, , j
N
1,2,...,
j
j
! j e dr r
j
j
j
j
dr
Bernstein polynomials (Bern)
Fourier polynomials (Fourier)
cos 2 j r
F r
for even j
1 !
N
j
N j
j
1
B r
r
r
1
1 F r
1,
1
1 !
j
j
j
j
N j
!
j
1
F r
r
for odd j
sin
j
2
r
j
N
0,1 ,
1,2,...,
r
j
N
0,2 ,
2,3,...,
Lobatto polynomials (Lob)
Sinc function (Sinc)
1 N r r
sin
j
Sinc r
d
1 , j
j
j
A r
P r r
1,1 , j
N
1,2,...,
1 N r r
j
j
j
dr
r
0,1 , j
N
1,2,...,
and their definition interval used in structural mechanics applications.
Table 1 : List of several basis functions j
D IFFERENTIAL AND INTEGRAL QUADRATURE
enerally an unknown sufficiently smooth function f x can be approximated by a set of basis functions j x for 1, 2, , j N , where N is the total number of collocation points in a closed definition interval. A polynomial set uniformly converges to the unknown function when the number of grid points tends to infinity and the unknown function is smooth in a closed interval. Hence, the approximate solution of a function f x can be G
252
Made with FlippingBook - Online Brochure Maker