Issue 29

F. Tornabene et alii, Frattura ed Integrità Strutturale, 29 (2014) 251-265; DOI: 10.3221/IGF-ESIS.29.22

Lagrange polynomials (PDQ)

Lagrange trigonometric polynomials (HDQ)

 

S r

 

 

S r

r

j

N

,

0,2 ,  

1,2,...,

L r

 

    l r

j

j

r r

 

r

,          , j

N

,

1,2,...,

    1 j

     1 j

j

j

j

S r

sin

r r L r 

 

 

2

j

N

N

     1 , j

 

   

r r

  

L r

r r L r

r r 

r r

 

N

N

    1 j

 

j

k

k

j

k

S r

S r

sin

,

sin

k

 

 

 

 

k

1, k j k  

1

2

2

k

1, k j k  

1

Jacobi polynomials (Jac)

Legendre polynomials (Leg)

  2 j

j

  1 

j

1

j

d

j

d

   

    , j  

  j  

j

P r  

r

1

J r

r

r

1

1

   2 ! 1 1 j j r 

j

j

j

2 ! j

j

j

dr

j dr

r

 

r

j

N

1,1    

1,2,...,

 

r

j

1,2,..., , N

1,1 ,    

,  

1

 

 

Chebyshev polynomials (I kind) (Cheb I)

Chebyshev polynomials (II kind) (Cheb II)

  r

   sin 1 arccos sin arccos j r  

    cos arccos , j r r

     j T r j

 

1,1 ,        j

N

1,2,...,

U r

r

1,1 ,        j

N

,

1,2,...,

j

j

Chebyshev polynomials (III kind) (Cheb III)

Chebyshev polynomials (IV kind) (Cheb IV)

  r

  r

   

   

   

   

2 1 arccos j 

2 1 arccos j 

sin

cos

2

2

 

    V r

W r

r

1,1 ,        j

N

,

1,2,...,

r

1,1 ,        j

N

,

1,2,...,

  r

  r

j

j

j

j

   

   

   

   

arccos

arccos

sin

cos

2

2

Power or monomial polynomials (Power)

Exponential polynomials (Exp)

  j M r r r  , j

  j E r e 

  1 , j r 

,          , j

N

1,2,...,

 

r

,          , j

N

1,2,...,

j

j

Hermite polynomials (Her)

Laguerre polynomials (Lague)

j

d

1

  2 r 

j

d

 

    1  

, r e r  j r

G r

0,        , j

N

j r

1,2,...,

2

H r

e

, e r

,          , j

N

1,2,...,

j

j

! j e dr  r

j

j

j

j

dr

Bernstein polynomials (Bern)

Fourier polynomials (Fourier)

    

cos         2 j r

   

F r

for even j

 1 !

N

j

 

N j 

 

j

1

B r

r

r

1

1 F r

1,    

1 

    1 !

j

j

j

j

N j

!

j

1   

F r

r

for odd j

sin  

 

j

2

r

j

N

0,1 ,

1,2,...,

   

r

j

N

0,2 ,   

2,3,...,

 

Lobatto polynomials (Lob)

Sinc function (Sinc)

 

1 N r r  

sin

j

 

Sinc r

d

    1 , j 

 

 

j

j

A r

P r r

1,1 ,        j

N

1,2,...,

1 N r r  

j

j

j

dr

r

0,1 ,       j

N

1,2,...,

 and their definition interval used in structural mechanics applications.

Table 1 : List of several basis functions j

D IFFERENTIAL AND INTEGRAL QUADRATURE

enerally an unknown sufficiently smooth function   f x can be approximated by a set of basis functions   j x  for 1, 2, , j N   , where N is the total number of collocation points in a closed definition interval. A polynomial set uniformly converges to the unknown function when the number of grid points tends to infinity and the unknown function is smooth in a closed interval. Hence, the approximate solution of a function   f x can be G

252

Made with FlippingBook - Online Brochure Maker