Issue 29

N.A. Nodargi et alii, Frattura ed Integrità Strutturale, 29 (2014) 111-127; DOI: 10.3221/IGF-ESIS.29.11

2    J

J  

I

J

cos3 sin 3

6

I

e

1  

2  

(A7)

,

,

3

2

f

f

f

1

2

3

 

sin 3

3 3

The latter equation yields by (A3) and (A4):

  

  

6

6 cos3

3

2

 

(A8)

f

f

f

f

3

2

2

1

sin 3

6

3

  follows by (A6). On the other hand, Eq. (A7) can be recast as

whence

2  

J

6

sin 3 cos3   f

 

(A9)

3

f

3

2

and , by differentiating with respect to ε , it leads to:   sin 3 cos3 3 cos3 sin 3          f f f f Noting that by (A9), (A3) and (A7) it turns out that:   2 sin 3 cos3 J        f f 3 2 3 2



J  

J

6

2 6

   

(A10)

3

3

2 

3 

3

3

2

6

(A11)

2 3

  

  

J  

   f f f f

    f f f

3

f

3

1

2

2

1

1

2

2

1

and by (A6), (A5) and (A3) it turns out that:   2 1 1 2 2 1  it is a simple matter to verify that (A10) yields:  2 1 cos3 3 2 sin 3           1

3                f f f f f f  ,   

(A12)

 

ij   

   f f f f

(A13)

f f

i

j

2

2

1

where

     

     

cos3 2 2 2 2 cos3 

0

 

(A14)

3sin 3

3sin 3 3cos3   

0

  and

  , more effective from a computational point of view, are:

Alternative expressions for

1 cos3 

3 J  

  

J   

6

    

2

2 

  

sin 3 1 sin 3

  

  

J  

J

J

1

2 cos3 2cos 3 5   

  

J  

cos3

6

(A15)

3

2

2

2

2 

2 3

2 

sin 3



  

    

J

J

J

J

J

J

3 6

18cos3

2

3

3

2

3

3

3 

4 

  and

  derived in (A8), (A6) and (A13), or the alternative expressions in (A15), get greatly

The expressions for

simplified when computed in an orthonormal basis of eigenvectors of ε . The tensor 1

f is spherical, thus it is represented

  diag 1;1;1 3 where

  diag • denotes the diagonal matrix with the enclosed eigenvalues. Recalling (A7), 2 f is

by

124

Made with FlippingBook - Online Brochure Maker