Issue 14
B. Lo
bato da Silva et
alii, Frattura ed
Integrità Struttu
rale, 14 (2010)
17-26; DOI: 10
.3221/IGF-ESIS.
14.02
Mod
el
Equat
ion to estima
te the equiva
lent alternatin
g stress Eq
uation
a
S
ar
Goodm
an
(17)
1
m
S
rt
a
S
ar
2
(18)
Gerb
er
1
m
S
rt
1
2
Walk
er
(19)
S
ar
a
R
1
a e
m
Kwo
fie
(20)
S
S
rt
ar
Table 4 : Equ f the Kwofi
ations used to e and Walke
estimate the e r’s models,
quivalent alter and , resp
nating stress. ectively, the
To res
estimate the pectively.
exponents o
Eqns. 21 an
d 22 were u
sed,
m rt S N
b
'
S
e
1 2 1 R R f
(21)
1 R
a
1
(22) ab. 5 shows
b
' f S N
1 R
a e estimate of ained results
R
1
Levenberg-M
ethod [11]. T
the
Th obt
parameters .
and was
accomplish
ed using the
arquardt m
Expected stimate Sta 0.407 1.453 ameters that c
value ndard error 0.019 0.084 haracterize Kw
Confiden
ce intervals Standard erro 0.468 1.720 ker’s models.
P
arameter E Table 5 : Par
Estimate 0.346 1.187 ofie and Wal
r
R E Tes F
SULTS AND
DISCUSSIO
NS
ts with ratio l or the ra 7 show t
oading, -1 tio loading e he statistic b
and
qual -1, 11 sp ehavior of th
ecimens wer e estimated f
e used of sam atigue lives fo
ple A and 2 r such stress
2 specimens level.
of sample B
. The Tab. 6
S a
(
MPa)
4
17
4
40
4
63
5
09
56
6 .3 e+03
S a / M Dev CV
S rt
(%)
4
6.9 4 e+05 3.51 e+05 5.73 6.7 1 tatistic behavi
9.4 52 e+05 1.99 e+04 4.92 6.3 0 or of fatigue li
.1 57 e+05 8.03 e+02 2.63 .2 32 ves ( R = -1 ) -
.2 63 e+04 9.38 e+04 * .7 * Sample A.
ean 9.63 iation 5.46 (%) 5 Table 6 : S
21
Made with FlippingBook - Online catalogs