Fatigue Crack Paths 2003
Table 2. Experimental data and calculation results of angle calαˆ
) W ( ˆ 1 c a l α
) W ( ˆ 2 c a l α
) W ( ˆ 3 c a l α
) W ( ˆ 4 c a l α
No
σr -
σ λ -
expˆα minexp,ˆα maxexp,ˆα
deg
deg
deg
deg
deg
deg
degI
1 -
0
1.5
0.38
2.57
44.5
0.0
0.0
0.1
2 -
∞ 43.6
39.2
47.9
44.4
45.0
45.0
0.0
3 1.00 0.50 20.5
15.8
25.2
22.3
22.5
22.5
22.5
4 1.00 1.00 31.4
27.5
37.3
31.4
31.7
31.7
13.3
5 0.50 0.54 16.2
12.3
20.0
24.8
19.3
20.4
18.6
6 0.50 0.97 28.2
24.2
32.3
29.9
32.5
33.6
8.1
7 -0.01 0.56 4.8
0.8
8.7
25.5
15.5
17.1
13.9
8 -0.01 0.97 31.2
26.3
36.2
30.2
32.9
35.9
4.1
cal α α ˆ ˆexp −
In Fig. 4 the absolute values of difference
between experimental and
calculated values of fatigue crack lines angles using the weight function method are
shown. For pure torsion, pure bending and loading with the cross correlation coefficient
rσ= 1 and rσ= 0.5 the weight function W2 and W3 correlate the experimental data very
well. In the case of loading with the cross correlation coefficient equal to
rσ= - 0.01, a choice of proper weight function depends on the maximumstresses ratio
λσ. For λ σ =0.56 the weight function W4 based on parameter of shear strain energy
density correlates experimental data in the best way. For λ σ =0.97 the best results
obtained using weight functions W1and W2.
α α ˆ ˆ exp −
Figure 4. Absolute values of difference
between experimental and calculated cal
values of fatigue crack lines angles using the weight function method
Made with FlippingBook - Online catalogs