Fatigue Crack Paths 2003
Unfortunately, the available data did
Steel - Cast Iron
not allow us to propose any efficient
0.010.010.10 10
100 1000 10000 100000 1000000
rule capable of estimating the
a0=(213.5/ΔσΔσΔσΔσ0) (a) a0=(394.2/ΔσΔσΔσΔσ0)3.03 a0=(115.6/ΔσΔσΔσΔσ0)3.0 3.03
CI,R=-1
threshold value of the stress intensity
CI, R>0
S,R=-1
factor, even if a synthesis diagram has
S, R=0
been proposed.
S, R=0.1
S, R>0.1
Finally, it is important to highlight
that, even though the proposed data
re-analyses can represent an useful
tool to perform a preliminary fatigue
assessment, it is Author’s opinion that
these values are only engineering
ΔσΔσΔσΔσ0/a0
[MPa/mm]
estimations. In fact, materials can
Aluminium
show behaviours that could be
affected by different parameters (like
10
3.45
=(163.6/ΔσΔσΔσΔσ
a 0
0 )
heat
treatments,
manufactory
R=-1
processes, etc.), which have not been
R=0-0.1
1
systematically taken into account in
the present study.
0.1
3.45
a 0 =(93.4/ΔσΔσΔσΔσ
0 )
0.00.01
3.45
a 0 =(53.3/ΔσΔσΔσΔσ
0 )
R E F E R E N C E S
(b)
10
100
1000
10000 100000
1. El Haddad, M. H., Dowling, N.
ΔσΔσΔσΔσ0/a0
[MPa/mm]
F., Topper T. H., Smith, K. N.
(1980) Int. J. Fract. 16, 15–24.
Steel - Cast Iron - Aluminium
2. Atzori, B., Lazzarin, P. (2000)
0.00.010.010.10
Int. J. Fracture 107, L3-L8.
a0=(2.18·10-3·E/ΔσΔσΔσΔσ0)3.57
CastIron
B., Lazzarin,
3. Atzori,
P.,
Steel
Meneghetti, G. (2003) Fatigue
Aluminium
Fract. Engng. Mater. Struct. 26,
257-267.
a0=(0.6·10-3·E/ΔσΔσΔσΔσ0)3.57
4. Taylor, D. (1999) Int. J. Fatigue
21, 413-420.
(c)
a0=(1.14·10-3·E/ΔσΔσΔσΔσ0)3.57
5. Taylor, D., Wang, G. (2000)
Fatigue Fract. Engng. Mater.
1E-05 0.0001 0.001 0.01 0.1
1
10
ΔσΔσΔσΔσ0/(E·a0)
[1/mm]
Struct. 23, 387-394.
6. Susmel, L., Taylor, D. (2002) In:
FATIGUE2002, Blom, A. (Ed.),
Figure 5. Relatiohship between a0 and Δσ0/a0
1889-1897.
for steel and cast-iron (a) and for aluminium
Susmel, L., Lazzarin, P. (2002)
7.
alloy (b). Universal a0 vs. Δσ0/(Ea0) diagram
Fatigue Fract. Engng. Mater.
(c).
Struct. 25, 63-78.
Made with FlippingBook - Online catalogs