PSI - Issue 42

Lisa Claeys et al. / Procedia Structural Integrity 42 (2022) 390–397 Claeys et al./ Structural Integrity Procedia 00 (2019) 000 – 000

397

8

Acknowledgements The authors would like to thank Aperam for the supply of the 304L ASS and prof. Hauke Springer (RWTH Aachen University, MPIE Düsseldorf) for the fabrication of the TWIP steel. Moreover, the FWO and special research fund (BOF) of Ghent University are acknowledged. Two fellowships were granted by FWO: SB PhD project number 1S16620N and senior postdoc project number 12ZO420N. BOF is acknowledged for the used equipment with grant number BOF15/BAS/062. References Claeys, L., De Graeve, I., Depover, T., & Verbeken, K., 2021. Impact of hydrogen and crosshead displacement rate on the martensitic transformations and mechanical properties of 304L stainless steel. Theoretical and Applied Fracture Mechanics. Claeys, L., Depover, T., De Graeve, I., & Verbeken, K., 2019. First observation by EBSD of martensitic transformations due to hydrogen presence during straining of duplex stainless steel. Materials Characterization. De Cooman, B., Estrin, Y., & Kim, S., 2018. Twinning-induced plasticity (TWIP) steels. Acta Materialia, 283-362. Dieudonné, T., Marchetti, L., Wery, M., Chêne, J., Allely, C., Cugy, P., & Scott, C., 2014. Role of copper and aluminium additions on the hydrogen embrittlement susceptibility of austenitic Fe-Mn-C TWIP steels. Corrosion Science, 218-226. Ferreira, P., Robertson, I., & Birnbaum, H., 1999. Hydrogen effects on the character of dislocations in high-purity aluminium. Acta Materialia , 2991-2998. Field, D., 1997. Recent advances in the application of orientation imaging. Ultramicroscopy, 1-9. Gavriljuk, V., Shivanyuk, V., & Foct, J., 2003. Diagnostic experimental results on the hydrogen embrittlement of austenitic steels. Acta Materialia, 1293-1305. Guo, X., Schwedt, A., Richter, S., & Bleck, W., 2014. Effects of Al on delayed fracture in TWIP steels - discussion from the aspects of structure homogeneity, hydrogen traps and corrosion resistance. 2nd International Conference on Metals and Hydrogen . Ghent, Belgium. Hirata, K., Iikubo, S., Koyama, M., Tsuzaki, K., & Ohtani, H., 2018. First-principles study on hydrogen diffusivity in BCC, FCC and HCP iron. Metallurgical and Materials Transactions A , 5015-5022. Ismer, L., Hickel, T., & Neugebauer, J., 2010. Ab initio study of the solublility and kinetics of hydrogen in austenitic high Mn steels. Physical Review B . Koyama, M., Okazaki, S., Sawaguchi, T., & Tsuzaki, K., 2016. Hydrogen embrittlement susceptibility of Fe-Mn binary alloys with high Mn content: effects of stable and metastable epsilon-martensite and Mn concentration. Metallurgical and Materials Transactions A, 2656 2673. Koyama, M., Sawaguchi, T., Lee, T., Lee, C., & Tsuzaki, K., 2011. Work hardening associated with epsilon-martensite transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels. Materials Science and Engineering A , 7310-7316. Lee, S.-J., Kim, J., Kane, S., & De Cooman, B., 2011. On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Materialia, 6809-6819. Martin, M., Dadfarnia, M., Nagao, A., Wang, S., & Sofronis, P., 2019. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Materialia, 734-750. Martin, M., Fenske, J., Liu, G., Sofronis, P., & Robertson, I., 2011. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels. Acta Materialia, 1601-1606. Michler, T., & Naumann, J., 2010. Hydrogen embrittlement of Cr-Mn-N austenitic stainless steels. International Journal of Hydrogen Energy, 1485-1492. Ogawa, Y., Hosoi, H., Tsuzaki, K., Redarce, T., Takakuwa, O., & Matsunaga, H., 2020. Hydrogen, as an alloying element, enables a greater strength-ductility balance in an Fe-Cr-Ni-based, stable austenitic stainless steel. Acta Materialia, 181-192. Oh, S.-K., Kilic, M., Seol, J.-B., Hong, J.-S., Soon, A., & Lee, Y.-K., 2020. The mechanisms of dynamic strain aging for type A serrations in tensile flow curves of Fe-18Mn-0.55C (wt%) twinning-induced plasticity steel. Acta Materialia, 366-375. Pontini, A., & Hermida, J., 1997. X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel. Scripta Materialia, 1831-1837. Sohrabi, M., Naghizadeh, M., & Mirzadeh, H., 2020. Deformation-induced martensite in austenitic stainless steels: a review. Archives of Civil and Mechanical Engineering, 124. Yamada, K., Koyama, M., Kaneko, T., & Tsuzaki, K., 2016. Positive and negative effects of hydrogen on tensile behaviour in polycrystalline Fe 30Mn-(6-x)Si-xAl austenitic alloys. Scripta Materialia, 54-57. Zhang, C., Zhi, H., Antonov, S., Chen, L., & Su, Y., 2021. Hydrogen-enhanced densified twinning (HEDT) in a twinning-induced plasticity (TWIP) steel. Scripta Materialia, 108-112. Zhang, L., Fukuyama, S., Iilima, T., & Yokogawa, K., 2010. Characterization of hydrogen-induced crack initiation in metastable austenitic stainless steels during deformation. Journal of Applied Physics, 063526-1-4.

Made with FlippingBook - Online catalogs