PSI - Issue 42

8

Shihao Bian et al. / Procedia Structural Integrity 42 (2022) 172–179 Shihao Bian/ Structural Integrity Procedia 00 (2019) 000 – 000

179

(b) Johnson, G.R., Cook, W.H., 1983. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures, in: American Defense Preparedness Association, Koninklijk Instituut van Ingenieurs (Netherlands) (Eds.). Presented at the 7th International Symposium on Ballistics, the Hague, the Netherlands, pp. 541 – 547. Khodak, A., Loesser, G., Zhai, Y., Udintsev, V., Klabacha, J., Wang, W., Johnson, D., Feder, R., 2017. Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall. Fusion Sci Technol. doi:10.13182/FST14-955 Kumnick, A.J., Johnson, H.H., 1980. Deep trapping states for hydrogen in deformed iron. Acta Metall 28, 33 – 39. doi:10.1016/0001 6160(80)90038-3 Li, J.C.M., Oriani, R.A., Darken, L.S., 1966. The Thermodynamics of Stressed Solids. Z Phys Chem 49, 271 – 290. doi:10.1524/zpch.1966.49.3_5.271 Loesser, G.D., Pitcher, C.S., Feder, R., Johnson, D., Pak, S., Walsh, M., Zhai, Y., 2017. ITER Diagnostic First Wall. Fusion Sci Technol. doi:10.13182/FST12-558 McNabb, A., Foster, P.K., 1963. A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans Metall Soc AIME 227, 618 – 627. Penzhorn, R.D., Torikai, Y., Watanabe, K., Matsuyama, M., Perevezentsev, A., 2012. On the fate of tritium in thermally treated stainless steel type 316L. J Nucl Mater 429, 346 – 352. doi:10.1016/j.jnucmat.2012.03.012 Sayman, O., Sen, F., Celik, E., Arman, Y., 2009. Thermal stress analysis of Wc – Co/Cr – Ni multilayer coatings on 316L steel substrate during cooling process. Mater Des 30, 770 – 774. doi:10.1016/j.matdes.2008.06.004 Simulia, 2011. Abaqus Analysis User's Manual. Dassault System. Smith, M., Zhai, Y., Loesser, G., Wang, W., Udintsev, V., Giacomin, T., Khodak, A., Johnson, D., Feder, R., Klabacha, J., 2017. Analysis of ITER Upper Port Diagnostic First Walls. Fusion Sci Technol. doi:10.13182/FST14-990 Sofronis, P., McMeeking, R.M., 1989. Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solids 37, 317 – 350. doi:10.1016/0022-5096(89)90002-1 Umbrello, D., M’Saoubi, R., Outeiro, J.C., 2007. The influence of Johnson – Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tool Manu 47, 462 – 470. doi:10.1016/j.ijmachtools.2006.06.006 Vasikaran, E., Charles, Y., Gilormini, P., 2020. Implementation of a reaction-diffusion process in the Abaqus finite element software. Mech Indus 21, 508. doi:10.1051/meca/2020010 (d) 6. Conclusion It has been shown that the mechanical fields, induced by both plane strain, symmetry assumptions, and thermal expansion, have a slight effect on hydrogen fields during the different loading phases of the DFW section, and thus, on hydrogen retention. It has also been seen that boundary conditions induce plastic strain localization in their vicinity, leading to a needed interrogation on their relevance; this localization, however, has no influence on the tritium retention or the desorption flux in the DFW section. Acknowledgements ITER is the Nuclear Facility INB no. 174. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. This publication is provided for scientific purposes only. Its contents should not be considered as commitments from the ITER Organization as a nuclear operator in the frame of the licensing process. This work has been performed under the auspices of the ITER Scientist Fellow Network and received funding from an ITER Organization Implementing Agreement (No. IO/IA/20/4300002270). References Benannoune, S., Charles, Y., Mougenot, J., Gaspérini, M., De Temmerman, G., 2020. Multidimensional finite-element simulations of the diffusion and trapping of hydrogen in plasma-facing components including thermal expansion. Phys Scr T171, 014011. doi:10.1088/1402-4896/ab4335 Bockris, J.O., Beck, W., Genshaw, M.A., Subramanyan, P.K., Williams, F.S., 1971. The effect of stress on the chemical potential of hydrogen in iron and steel 19, 1209 – 1218. doi:10.1016/0001-6160(71)90054-X Chandrasekaran, H., M’Saoubi, R., Chazal, H., 2005. Modelling of material flow stress in chip formation process from orthogon al milling and split hopkinson bar tests. Mach Sci Technol 9, 131 – 145. Charles, Y., Nguyen, T.H., Gaspérini, M., 2017. Comparison of hydrogen transport through pre-deformed synthetic polycrystals and homogeneous samples by finite element analysis. Int J Hydrog Energy 42, 20336 – 20350. doi:10.1016/j.ijhydene.2017.06.016 Giacomin, T., Delhom, D., Drevon, J.M., Guirao, J., Iglesias, S., Jourdan, T., Loesser, D., Maquet, P., Ordieres, J., Pak, S. , Proust, M., Smith, M., Udintsev, V.S., Vacas, C., Walsh, M.J., Zhai, Y., 2015. Engineering requirements due to the ESP/ESPN regulation apply at the port plug for ITER diagnostic system. Fusion Eng Des 98-99, 1488 – 1491. Guillermain, D., 2016. ITER Report T2YEND. Hodille, E.A., Fernandez, N., Piazza, Z.A., Ajmalghan, M., Ferro, Y., 2018. Hydrogen supersaturated layers in H/D plasma-loaded tungsten: A global model based on thermodynamics, kinetics and density functional theory data. Phys Rev Mater 2, 093802.

(c)

ng Phase 2 through (a-b) the cooling pipes

Made with FlippingBook - Online catalogs