PSI - Issue 42
Aleksander Omholt Myhre et al. / Procedia Structural Integrity 42 (2022) 935–942 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
942
8
i.e., the materials with the best and worst performance in hydrogen environment. Following the screening procedure, the results of the fracture toughness and fatigue crack growth rate testing will be reported elsewhere. Acknowledgements The authors are grateful for the support provided by the Research Council of Norway through the HyLINE (294739) project. References Alvaro, A., V. Olden, A. Macadre, and Odd Magne Akselsen. 2014. ‘Hydrogen Embrittlement Susceptibility of a Weld Simulated X70 Heat Affected Zone under H2 Pressure’. Materials Science and Engineering: A 597 (March): 29 – 36. https://doi.org/10.1016/j.msea.2013.12.042. Amaro, Robert L., Ryan M. White, Chris P. Looney, Elizabeth S. Drexler, and Andrew J. Slifka. 2018. ‘Development of a Model f or Hydrogen Assisted Fatigue Crack Growth of Pipeline Steel1’. Journal of Pressure Vessel Technology 140 (2). https://doi.org/10.1115/1.4038824. API Specification 5L. 2000. Specification for Line Pipe . 42nd ed. USA: American Petroleum Institute. Chatzidouros, E. V., V. J. Papazoglou, and D. I. Pantelis. 2014. ‘Hydrogen Effect on a Low Carbon Ferritic - Bainitic Pipeline Steel’. International Journal of Hydrogen Energy 39 (32): 18498 – 505. https://doi.org/10.1016/j.ijhydene.2014.09.029. Gassco. 2022. ‘Research and Development’. 2022. https://www.gassco.no/en/our -activities/research-and-development/. Gerwen, Rob van, Marcel Eijgelaar, a nd Theo Bosma. 2019. ‘Hydrogen in the Electricity Value Chain’. Position Paper. DNV GL -Group Technology & Research. Henthorne, M. 2016. ‘The Slow Strain Rate Stress Corrosion Cracking Test—A 50 Year Retrospective’. Corrosion 72 (12): 1488 – 1518. https://doi.org/10.5006/2137. J. Cialone, Henry, and John H. Holbrook. 1988. Sensitivity of Steels to Degradation in Gaseous Hydrogen . Johnson, W. H. 1875. ‘On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids’. Proceedings of the Royal Society of London 23: 168 – 79. Krauss, George. 2015. Steels: Processing, Structure, and Performance . Asm International. Laureys, A., R. Depraetere, M. Cauwels, T. Depover, S. Hertelé, and K. Verbeken. 2022. ‘Use of Existing Steel Pipeline Infras tructure for Gaseous Hydrogen Storage and Transport: A Review of Factors Affecting Hydrogen Induced Degradation’. Journal of Natural Gas Science and Engineering 101 (May): 104534. https://doi.org/10.1016/j.jngse.2022.104534. Le Hong, S. 2001. ‘Influence of Surface Condition on Primary Water Stress Corrosion Cracking Initiation of Alloy 600’. Corrosion 57 (04). Lee, Yun-Hee, Hae Moo Lee, Yong-il Kim, and Seung- Hoon Nahm. 2011. ‘Mechanical Degradation of API X65 Pipeline Steel by Exposure to Hydrogen Gas’. Metals and Materials International 17 (3): 389 – 95. https://doi.org/10.1007/s12540-011-0614-1. Margot-Marette, H., G. Bardou, and J. C. Charbonnier. 1987. ‘The Application of the Slow Strain Rate Test Method for the Development of Linepipe Steels Resistant to Sulphide Stress Cracking’. Corrosion Science , Hydrogen Sulphide Induced Environment Sensitive Fracture of Steels, 27 (10): 1009 – 26. https://doi.org/10.1016/0010-938X(87)90095-3. Michler, Thorsten, Arkadiy A Yukhimchuk, and Joerg Naumann. 2008. ‘Hydrogen Environment Embrittlement Testing at Low Temperat ures and High Pressures’. Corros. Sci. 50 (12): 3519 – 26. Mo ro, I., L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer. 2010. ‘Hydrogen Embrittlement Susceptibility of a High Strength Steel X80’. Materials Science and Engineering: A 527 (27): 7252 – 60. https://doi.org/10.1016/j.msea.2010.07.027. Nanninga, N. E., Y. S. Levy, E. S. Drexler, R. T. Condon, A. E. Stevenson, and A. J. Slifka. 2012. ‘Comparison of Hydrogen Embrittlemen t in Three Pipeline Steels in High Pressure Gaseous Hydrogen Environments’. Corrosion Science 59 (June): 1 – 9. https://doi.org/10.1016/j.corsci.2012.01.028. Nowick, Arthur S. 2012. ‘Diffusion in Solids: Recent Developments’. Ogawa, Yuhei, Masaki Hino, Masami Nakamura, and Hisao Matsunaga. 2021. ‘Pearlite -Driven Surface-Cracking and Associated Loss of Tensile Ductility in Plain-Carbon Steels under Exposure to High- Pressure Gaseous Hydrogen’. International Journal of Hydrogen Energy 46 (9): 6945 – 59. https://doi.org/10.1016/j.ijhydene.2020.11.137. Olden, Vigdis, Antonio Alvaro, and Odd M. Akselsen. 2012. ‘Hydrogen Diffusion and Hydrogen In fluenced Critical Stress Intensity in an API X70 Pipeline Steel Welded Joint – Experiments and FE Simulations’. International Journal of Hydrogen Energy 37 (15): 11474 – 86. https://doi.org/10.1016/j.ijhydene.2012.05.005. Park, Cheolho, Namhyun Kang, and Ste phen Liu. 2017. ‘Effect of Grain Size on the Resistance to Hydrogen Embrittlement of API 2W Grade 60 Steels Using in Situ Slow-Strain- Rate Testing’. Corrosion Science 128 (November): 33 – 41. https://doi.org/10.1016/j.corsci.2017.08.032. Ronevich, Joseph A., Brian P. Somerday, and Chris W. San Marchi. 2016. ‘Effects of Microstructure Banding on Hydrogen Assisted Fatigue Crack Growth in X65 Pipeline Steels’. International Journal of Fatigue 82 (January): 497 – 504. https://doi.org/10.1016/j.ijfatigue.2015.09.004. San Marchi, Christopher W, and Brian P Somerday. 2012. ‘Technical Reference for Hydrogen Compatibility of Materials.’, Septem ber. https://doi.org/10.2172/1055634. Takasawa, Koichi, Ryo Ikeda, Noboru Ishikawa, and Ryoji Ishigaki. 2012. ‘Effects of Grain S ize and Dislocation Density on the Susceptibility to High-Pressure Hydrogen Environment Embrittlement of High-Strength Low- Alloy Steels’. International Journal of Hydrogen Energy 37 (3): 2669 – 75. https://doi.org/10.1016/j.ijhydene.2011.10.099.
Made with FlippingBook - Online catalogs