PSI - Issue 42
Minghua Cao et al. / Procedia Structural Integrity 42 (2022) 777–784
784
8
Minghua Cao et al. / Structural Integrity Procedia 00 (2019) 000–000
iron: Digital volume correlation vs. model with fully resolved microstructure vs. periodic unit cell. Journal of the Mechanics and Physics of Solids 125, 714–735. Behera, A., 2012. A novel material used in automotive industry: compacted graphite iron. Materials Research 1, 1–4. Collini, L., Moroni, F., Pirondi, A., 2019. Modeling the influence of stress triaxiality on the failure strain of nodular cast iron microstructures. Procedia Structural Integrity 18, 671–687. Dawson, S., 2008. Compacted graphite iron - a material solution for modern diesel engine cylinder blocks and heads. 68th WFC - World Foundry Congress. Chennai, India, OP-19. Drago, A., Pindera, M. J., 2007. Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures. Composites Science and Technology 67, 1243–1263. Endo, M., Yanase, K., 2014. Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons. Theoretical and Applied Fracture Mechanics 69, 34–43. Frishmuth, R. E., McLaughlin, P. V, 1976. Failure analysis of cast irons under general three-dimensional stress states. Journal of Engineering Materials and Technology 98, 69–75. Garoz, D., Gilabert, F. A., Sevenois, R. D. B., Spronk, S. W. F., Van Paepegem, W., 2019. Consistent application of periodic boundary conditions in implicit and explicit finite element simulations of damage in composites. Composites Part B: Engineering 168, 254–266. Hill, R., 1963. Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids 11, 357–372. Hooputra, H., Gese, H., Dell, H., Werner, H., 2004. A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashworthiness 9, 449–464. Kohout, J., 2001. A simple relation for deviation of grey and nodular cast irons from Hooke’s law. Materials Science and Engineering: A 313, 16–23. Omairey, S. L., Dunning, P. D., Sriramula, S., 2019. Development of an ABAQUS plugin tool for periodic RVE homogenisation. Engineering with Computers 35, 567–577. Palkanoglou, E. N., Baxevanakis, K. P., Silberschmidt, V. V., 2022. Thermal debonding of inclusions in compacted graphite iron: effect of matrix phases. Engineering Failure Analysis 106476. Qiu, Y., Pang, J. C., Li, S. X., Yang, E. N., Fu, W. Q., Liang, M. X., Zhang, Z. F., 2016. Influence of thermal exposure on microstructure evolution and tensile fracture behaviors of compacted graphite iron. Materials Science and Engineering: A 664, 75–85. Qiu, Y., Pang, J. C., Yang, E. N., Li, S. X., Zhang, Z. F., 2016. Transition of tensile strength and damaging mechanisms of compacted graphite iron with temperature. Materials Science and Engineering: A 677, 290–301. Seleš, K., Tomić, Z., Tonković, Z., 2021. Microcrack propagation under monotonic and cyclic loading conditions using generali sed phase-field formulation. Engineering Fracture Mechanics 255, 107973. Selin, M., 2010. Tensile and thermal properties in compacted graphite irons at elevated temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 41, 3100–3109. Yang, W. J., Pang, J. C., Wang, L., Wang, S. G., Liu, Y. Z., Hui, L., Li, S. X., Zhang, Z. F., 2021. Tensile properties and damage mechanisms of compacted graphite iron based on microstructural simulation. Materials Science and Engineering: A 814, 141244. Yue, W., Jianping, L., Zhong, Y., Yongchun, G., Zhijun, M., Minxian, L., Tong, Y., Dong, T., 2019. Thermal conductivity analysis of compacted graphite cast iron after a creep test. Metallurgical and Materials Transactions A 50, 3697–3704.
Made with FlippingBook - Online catalogs