PSI - Issue 42
Monika Středulová et al. / Procedia Structural Integrity 42 (2022) 1537– 1544 M. Strˇedulova´ et al. / Structural Integrity Procedia 00 (2019) 000–000
1544
8
Acknowledgements
Support of the project FAST-J-22-7889 is gratefully acknowledged. The first author is Brno Ph.D. Talent Scholar ship Holder – Funded by the Brno City Municipality, Czech Republic.
References
Alnaggar, M., Cusatis, G., Di Luzio, G., 2013. Lattice Discrete Particle Modeling (LDPM) of Alkali Silica Reaction (ASR) deterioration of concrete structures. Cem Concr Comp 41, 45–59. doi: 10.1016/j.cemconcomp.2013.04.015 . Bhaduri, T., Gomaa, S., Alnaggar, M., 2021. Coupled experimental and computational investigation of the interplay between discrete and continuous reinforcement in ultra-high performance concrete beams. II: Mesoscale modeling. J Eng Mech -, in print. doi: - . Bolander, J.E., Elia´sˇ, J., Cusatis, G., Nagai, K., 2021. Discrete mechanical models of concrete fracture. Engineering Fracture Mechanics . Cusatis, G., Cedolin, L., 2007. Two-scale study of concrete fracturing behavior. Engineering Fracture Mechanics 74, 3–17. doi: 10.1016/j. engfracmech.2006.01.021 . Cusatis, G., Mencarelli, A., Pelessone, D., Baylot, J., 2011a. Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. II: Calibration and validation. Cement and Concrete Composites 33, 891–905. doi: 10.1016/j.cemconcomp.2011.02.010 . Cusatis, G., Pelessone, D., Mencarelli, A., 2011b. Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory. Cement and Concrete Composites 33, 881–890. doi: 10.1016/j.cemconcomp.2011.02.011 . Elia´sˇ, J., Voˇrechovsky´ , M., Skocˇek, J., Bazˇant, Z.P., 2015. Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experi mental data. Engineering Fracture Mechanics 135, 1–16. doi: 10.1016/j.engfracmech.2015.01.004 . Elia´sˇ, J., 2016. Adaptive technique for discrete models of fracture. International Journal of Solids and Structures 100–101, 376–387. doi: 10. 1016/j.ijsolstr.2016.09.008 . Elia´sˇ, J., 2020. Elastic properties of isotropic discrete systems: Connections between geometric structure and poisson’s ratio. International Journal of Solids and Structures 191-192, 254–263. doi: 10.1016/j.ijsolstr.2019.12.012 . Elia´sˇ, J., Cusatis, G., 2022. Homogenization of discrete mesoscale model of concrete for coupled mass transport and mechanics by asymptotic expansion. Journal of the Mechanics and Physics of Solids 167, 105010. doi: 10.1016/j.jmps.2022.105010 . Elia´sˇ, J., Voˇrechovsky´ , M., 2020. Fracture in random quasibrittle media: I. Discrete mesoscale simulations of load capacity and fracture process zone. Engineering Fracture Mechanics 235, 107160. doi: 10.1016/j.engfracmech.2020.107160 . Eurocode 2, 2004. Design of concrete structures - Part 1-1: General rules and rules for buildings. Technical Report Cˇ SN-EN-12390-3. EN. Brussels. Fascetti, A., Ichimaru, S., Bolander, J.E., . Stochastic lattice discrete particle modeling of fracture in pervious concrete. Computer-Aided Civil and Infrastructure Engineering n / a, 1–21. doi: https://doi.org/10.1111/mice.12816 . Gonnerman, H., 1925. E ff ect of size and shape of test specimen on compressive strength of concrete. Proc. ASTM 25, 237–250. Idiart, A.E., Lo´pez, C.M., Carol, I., 2011. Modeling of drying shrinkage of concrete specimens at the meso-level. Materials and Structures 44, 415–435. doi: 10.1617/s11527-010-9636-2 . Kotsovos, M.D., 1983. E ff ect of testing techniques on the post-ultimate behaviour of concrete in compression. Mate´riaux et Constructions 16, 3–12. doi: 10.1007/BF02474861 . Lisztwan, D., Kumpova, I., Danek, P., Frant´ık, P., Kersner, Z., 2021. Mechanical fracture parameters of concrete drill-core specimens supported by a slenderness ratio study. IOP Conference Series: Materials Science and Engineering 1209, 012042. doi: 10.1088/1757-899X/1209/1/ 012042 . Neville, A., 2012. Properties of concrete. 5th ed. ed., Pearson Education Limited, Essex. Smith, J., Cusatis, G., 2017. Numerical analysis of projectile penetration and perforation of plain and fiber reinforced concrete slabs. International Journal for Numerical and Analytical Methods in Geomechanics 41, 315–337. doi: 10.1002/nag.2555 . Thilakarathna, P.S., Kristombu Baduge, K.S., Mendis, P., Vimonsatit, V., Lee, H., 2020. Mesoscale modelling of concrete – A review of geom etry generation, placing algorithms, constitutive relations and applications. Engineering Fracture Mechanics 231, 106974. doi: 10.1016/j. engfracmech.2020.106974 . Van Mier, J.B.M., 1984. Strain-softening of Concrete under Multiaxial Loading Conditions. Phd thesis. Eidhoven University of Technology. doi: 10.6100/IR1451 . Van Mier, J.G., Shah, S.P., Arnaud, M., Balayssac, J.P., Bascoul, A., Choi, S., Dasenbrock, D., Ferrara, G., French, C., Gobbi, M.E., Karihaloo, B.L., Ko¨nig, G., Kotsovos, M.D., Labuz, J., Lange-Kornbak, D., Markeset, G., Pavlovic, M.N., Simsch, G., Thienel, K.C., Turatsinze, A., Ulmer, M., Van Geel, H.J., Van Vliet, M.R., Zissopoulos, D., 1997. Strain-softening of concrete in uniaxial compression. Materials and Structures / Materiaux et Constructions 30, 195–209. doi: 10.1007/bf02486177 . Van Vliet, M.R., Van Mier, J.G., 1996. Experimental investigation of concrete fracture under uniaxial compression. Mechanics of Cohesive Frictional Materials 1, 115–127. doi: 10.1002/(SICI)1099-1484(199601)1:1<115::AID-CFM6>3.0.CO;2-U . Vonk, R.A., Rutten, H.S., van Mier, J.G., Fijneman, H.J., 1989. Influence of boundary conditions on softening of concrete loaded in compression. Fracture of Concrete and Rock - Recent Developments , 711–720. Wriggers, P., Moftah, S.O., 2006. Mesoscale models for concrete : Homogenisation and damage behaviour. Finite Elements in Analysis and Design 42, 623–636. doi: 10.1016/j.finel.2005.11.008 .
Made with FlippingBook - Online catalogs