PSI - Issue 42

Stanislav Seitl et al. / Procedia Structural Integrity 42 (2022) 1512–1519 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

1519

8

Note that the scatter of the experimental results of all composite materials is standard and is acceptable in terms of practical use. Acknowledgements This outcome has been achieved with the financial support of the Czech Science foundation project No. 21-08772S - Influence of Self-Healing effects on structural fatigue life extension of structures made from high performance concrete (InShe) and mobility project No. 8J22AT008 - Mechanical fracture quantification of role of hemp fibers on self-healing processes in selected composites (KvaRK). References ACI 207R Effect of Restraint, Volume Change, and Reinforcement on Cracking of Mass Concrete, states in Chapter 3. Alliche, A., 2004, Damage model for fatigue loading of concrete, Int. J. Fatigue 26, 915 – 921. Baktheer, A., Chudoba, R., 2019, Enhanced assessment rule for concrete fatigue under compression considering the nonlinear effect of loading sequence, Int. J. Fatigue 126, 130 – 142. Basqiun, O.H., 1910, The exponential law of endurance tests. Proceedings of ASTM 10(II), 625 – 630. Eliáš, J., Le, J.-L., 1992, Modeling of mode-I fatigue crack growth in quasibrittle structures under cyclic compression. Eng. Fract. Mech. 96, 26 – 36. Elices, M., Guinea, G.V., Planas, J., 1997, On the measurement of concrete fracture energy using three-point bend test. Mat. Struct. 30, 375 – 376. Hilsdorf, H.K., Kesler, C.E., 1966, Fatigue strength of concrete under varying flexural stresses. JP 63, 1059 – 1076. Hordijk DA., 1993. Local approach to fatigue of concrete: 1. Kachkouch, F.Z., Carvalho Noberto, C., Babadopulos, L., Santos Melo, A.R., Lima Machado, A.M., Sebaibi, N., Boukhelf, F., El Mendili, Y., 2022, Fatigue behavior of concrete: A literature review on the main relevant parameters. Constr. Build. Mat. 338, 127510. Karihaloo, B.L., Nallathambi, P., 1989, An improved effective crack model for determination of fracture toughness of concrete. Cement Concr. Res. 19, 603 – 610. Klaiber, F.W., and Lee, D.Y., 1982, The Effect of Air Content, Water-Cement Ratio, and Aggregate, Type on The Flexural Fatigue Strength of Plain Concrete. Fatigue of Concrete, SP-41, ACI, pp. 401. Kohout. J. and Vechet. S., 2001, A new function for fatigue curves characterization and its multiple merits. Int. J. Fatigue 23(2), 175 – 183. Kostmaka, S.H. Kerkhoff, B. Panarese, W. C., 2011. Designing and control of concrete mixture, 15th ed. Cement portland association 2011. Illinois, USA. Lee, M.K, Barr, B.I.G., 2004, An overview of the fatigue behaviour of plain and fibre reinforced concrete, Cem. Concr. Compos., 26, 299 – 305. Medeiros, A., Zhang, X., Ruiz, G., Yu, R.C., de SL Velasco, M., 2015, Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete. Int. J. Fatigue 70 , 342 – 350. Miarka, P., Seitl, S., Bílek, V., Cifuentés, H., 2022, Assessment of fatigue resistance of concrete: S- N curves to the Paris’ law curves. Constr . Build. Mat.341, 1 – 18. Nagaraj, T.S., Banu, Z., 1996, Generalization of Abrams‘ law . Cement Concr. Res. 26, 933 – 942. Oyedele, L., Bello, S., Olaitan, O.K., Olonade, K., Olajumoke, A.M., Ajayi, A., Akanbi, L., Akinade, A., Sanni, M., Bello, A.L., 2022, A deep learning approach to concrete water-cement ratio prediction. Results Mat., 100300. RILEM TC-50 FMC (Reccommendation), 1985, Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams. Mat. Struct. 18 (107), 285 – 290. Seitl, S., Miarka, P., Klusák, J., Domski, J., Katzer, J., Šimonová, H., Keršner, Z., 2018 , Change of a crack propagation rate in fine-grained cement based composites due to partial replacement of aggregate by ceramic waste. Key Eng. Mat. 761, 111 – 115. Seitl, S., Miarka, P., Šimonová, H., Frantík, P., Keršner, Z., Domski, J., Katzer, J., 2019 a, Change of fatigue and mechanical fracture properties of a cement composite due to partial replacement of aggregate by red ceramic waste. Periodica Polytechnica Civil Engineering (1), 152 – 159. Seitl, S. Miarka, P. Bílek, V., 2019b, Fatigue and fracture mechanical properties of selected concrete for subtle precast structural elements. MATEC Web of Conferences 310. 00033. Seitl, S., Benesova, A., Blasón, S., Miarka, P., Klusák, J., Bílek, V., 2022, Advanced statistical evaluation of fatigue data obtained during the measurement of concrete mixtures with various water-cement ratio, 27/28th International Conference ENGINEERING MECHANICS 2022, Milovy, Czech Republic, May 9 – 12, 2022, Paper #116, 361 – 364, doi: 10.21495/512361. Šimonová, H., Kucharczyková, B., Bílek, V., Malíková, L., Miarka, P., Lipowczan, M., 2021, Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humidity. Applied Sciences – Basel 11(1), 1 – 20. Zhang, B. Phillips, D.V. Wu, K., 1996, Effects of loading frequency and stress reversal on fatigue life of plain concrete. Mag. Concr. Res. 48, 361 – 375.

Made with FlippingBook - Online catalogs