PSI - Issue 42
Goran Vizentin et al. / Procedia Structural Integrity 42 (2022) 793–798 Vizentin/ Structural Integrity Procedia 00 (2019) 000 – 000
798
6
Gljušćić, M., Franulović, M., Lanc, D., Božić, Ž., 2022. Application of digital image correlation in behavior modelling of AM CFRTP composites. Eng. Fail. Anal. 136, 106133. https://doi.org/10.1016/j.engfailanal.2022.106133 Grbović, A., Kastratović, G., Božić, Ž., Božić, I., Obradović, A., S edmak, A., Sedmak, S., 2022. Experimental and numerical evaluation of fracture characteristics of composite material used in the aircraft engine cover manufacturing. Eng. Fail. Anal. 137, 106286. https://doi.org/10.1016/j.engfailanal.2022.106286 Kastratovi ć, G., Grbović, A., Sedmak, A., Božić, Ž., Sedmak, S., 2021. Composite material selection for aircraft structures based on ex perimental and numerical evaluation of mechanical properties. Procedia Struct. Integr. 31, 127 – 133. https://doi.org/10.1016/j.prostr.2021.03.021 Khosravani, M.R., Božić, Ž., Zolfagharian, A., Reinicke, T., 2022. Failure analysis of 3D -printed PLA components: Impact of manufacturing defects and thermal ageing. Eng. Fail. Anal. 136, 106214. https://doi.org/10.1016/j.engfailanal.2022.106214 Kim, D.-U., Seo, H.-S., Jang, H.-Y., 2021. Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures. J. Mar. Sci. Eng. 9, 726. https://doi.org/10.3390/jmse9070726 Kim, H.S., Huang, S., 2021. S-N Curve Characterisation for Composite Materials and Prediction of Remaining Fatigue Life Using Damage Function. J. Compos. Sci. 5, 76. https://doi.org/10.3390/jcs5030076 Kim, S.Y., Shim, C.S., Sturtevant, C., Kim, D.D.W., Song, H.C., 2014. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures. Int. J. Nav. Archit. Ocean Eng. 6, 723 – 736. https://doi.org/10.2478/IJNAOE-2013-0208 Kožar, I., Torić Malić, N., Simonetti, D., Smolčić, Ž., 20 19. Bond-slip parameter estimation in fiber reinforced concrete at failure using inverse stochastic model. Eng. Fail. Anal. 104, 84 – 95. https://doi.org/10.1016/j.engfailanal.2019.05.019 Lukács, J., Koncsik, Z., Chován, P., 2021. Integrity reconstruction of damaged transporting pipelines applying fiber reinforced polymer composite wraps. Procedia Struct. Integr. 31, 51 – 57. https://doi.org/10.1016/j.prostr.2021.03.009 Martin, R., 2008. Ageing of composites, Ageing of Composites. Woodhead Publishing Limited, Cambridge England. https://doi.org/10.1533/9781845694937 Morla, P., Gupta, R., Azarsa, P., Sharma, A., 2021. Corrosion evaluation of geopolymer concrete made with fly ash and bottom ash. Sustain. 13, 1 – 16. https://doi.org/10.3390/su13010398 Panaitescu, I., Koch, T., Archodoulaki, V.-M., 2019. Accelerated aging of a glass fiber/polyurethane composite for automotive applications. Polym. Test. 74, 245 – 256. https://doi.org/10.1016/j.polymertesting.2019.01.008 Rubino, F., Nisticò, A., Tucci, F., Carlone, P., 2020. Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 8, 26. https://doi.org/10.3390/jmse8010026 Silvera, A., Vazquez, J., Vinssac, V., 2011. Strain analysis of a glass-fibre-reinforced polyester under dynamic loads. Spanish J. Agric. Res. 9, 49. https://doi.org/10.5424/sjar/20110901-444-10 Sousa, J., Marques, J., Garcia, M., Infante, V., Amaral, P., 2020. Mechanical characterization of sandwich composites with embedded sensors. Eng. Fail. Anal. 117, 104765. https://doi.org/10.1016/j.engfailanal.2020.104765 Takacs, L., Kovacs, L., Olajos, T., 2020. Numerical tool with mean-stress correction for fatigue life estimation of composite plates. Eng. Fail. Anal. 111, 104456. https://doi.org/10.1016/j.engfailanal.2020.104456 Tomasz, M., Sz ymon, D., Bartosz, B., Joanna, W., Paweł, Z., Grzegorz, L., 2022. Flexural and compressive residual strength of composite bar s subjected to harsh environments. Eng. Fail. Anal. 133, 105958. https://doi.org/10.1016/j.engfailanal.2021.105958 Vázquez, J., Silvera, A., Arias, F., Soria, E., 1998. Fatigue properties of a glass-fibre-reinforced polyester material used in wind turbine blades. J. Strain Anal. Eng. Des. 33, 183 – 193. https://doi.org/10.1243/0309324981512904 Vizentin, G., Glujić, D., Špada, V., 202 1. Effect of Time-Real Marine Environment Exposure on the Mechanical Behavior of FRP Composites. Sustainability 13, 9934. https://doi.org/10.3390/su13179934 Vizentin, G., Vukelic, G., 2022. Marine environment induced failure of FRP composites used in maritime transport. Eng. Fail. Anal. 137, 106258. https://doi.org/10.1016/j.engfailanal.2022.106258 Vizentin, G., Vukelic, G., 2019. Degradation and damage of composite materials in marine environment. Medziagotyra. https://doi.org/10.5755/j01.ms.26.3.22950 VIZENTIN, G., VUKELIC, G., 2020. Degradation and Damage of Composite Materials in Marine Environment. Mater. Sci. 26, 337 – 342. https://doi.org/10.5755/j01.ms.26.3.22950 Vukelic, G., Vizentin, G., 2021. Composite wrap repair of a failed pressure vessel — Experimental and numerical analysis. Thin-Walled Struct. 169, 108488. https://doi.org/10.1016/j.tws.2021.108488 Yasar, A., Kacar, İ., Keskin, A., 2014. Tensile and Fatigue Behavior of Glass Fiber -Reinforced (MAT-8)/Polyester Automotive Composite. Arab. J. Sci. Eng. 39, 3191 – 3197. https://doi.org/10.1007/s13369-013-0897-2
Made with FlippingBook - Online catalogs