PSI - Issue 42
Abdulla Abakarov et al. / Procedia Structural Integrity 42 (2022) 1046–1053 A. Abakarov and Y. Pronina / Structural Integrity Procedia 00 (2019) 000–000
1053
8
Butusova, Y.N., Mishakin, V.V., Kachanov, M., 2020. On Monitoring the Incubation Stage of Stress Corrosion Cracking in steel by the eddy current method. International Journal of Engineering Science 148, 103212. Keiichiro Tohgo, Akihiro Kenmochi, Yoshinobu Shimamura Fujii, T., Tohgo, K., Kenmochi, A., Shimamura, Y., 2015. Experimental and Numerical Investigation of Stress Corrosion Cracking of Sensitized Type 304 Stainless Steel under High-Temperature and High-Purity Water. Corrosion Science 97, 139–149. Grekov, M.A., Sergeeva, T.S., 2020. Interaction of Edge Dislocation Array with Bimaterial Interface Incorporating Interface Elasticity. International Journal of Engineering Science 149, 103233. Jones, R.H., Ricker, R.E., 1992. Mechanisms of Stress-Corrosion Cracking, in “ Stress-Corrosion Cracking Materials Performance and Evaluation ”. In: Jones, R.H. (Ed.). ASM International, pp. 1–40. DOI: 10.1361 / sccmpae1992p001 Kachanov, M., 1993. Elastic Solids with Many Cracks and Related Problems. Advances in Applied Mechanics 30(C), 259–445. Kachanov, M., Mishakin, V., Pronina, Y., 2021. On Low Cycle Fatigue of Austenitic Steel. Part II: Extraction of Information on Microcrack Density from a Combination of the Acoustic and Eddy Current Data. International Journal of Engineering Science 169, 103569. Kamaya, M., Haruna, T., 2007. Influence of Local Stress on Initiation Behavior of Stress Corrosion Cracking for Sensitized 304 Stainless Steel. Corrosion Science 49, 3303–3324. Kamaya, M., Totsuka, N., 2002. Influence of Interaction Between Multiple Cracks on Stress Corrosion Crack Propagation. Corrosion Science 44, 2333–2352. Kanaun, S., 2021. E ff ective Conductivity of Anisotropic Media with Crack-Like Inclusions and Cracks of Arbitrary Shapes. International Journal of Engineering Science 168, 103561. Martynyuk, M., Kachanov, M., 2020. Elastic Compliances and Stress Intensity Factors of Multi-Link Zig-zag Cracks. International Journal of Engineering Science 148, 103225. Piccolroaz, A., Gorbushin, N., Mishuris, G., Nieves, M.J., 2020. Dynamic Phenomena and Crack Propagation in Dissimilar Elastic Lattices. International Journal of Engineering Science 149, 103208. Piccolroaz, A., Peck, D., Wrobel, M., Mishuris, G., 2021. Energy Release Rate, the Crack Closure Integral and Admissible Singular Fields in Fracture Mechanics. International Journal of Engineering Science 164, 103487. Pronina, Y., Maksimov, A., Kachanov, M., 2020. Crack Approaching a Domain Having the Same Elastic Properties But Dif ferent Fracture Toughness: Crack Deflection Vs Penetration. International Journal of Engineering Science 156, 103374. https: // doi.org / 10.1016 / j.ijengsci.2020.103374. Saito, K., Kuniya, J., 2001. Mechanochemical Model to Predict Stress Corrosion Crack Growth of Stainless Steel in High Temperature Water. Corrosion Science 43, 1751–1766. Tohgo, K., Suzuki, H., Shimamura, Y., Nakayama, G., Hirano, T., 2009. Monte Carlo Simulation of Stress Corrosion Cracking on a Smooth Surface of Sensitized Stainless Steel Type 304. Corrosion Science 51, 2208–2217. Wang, Y.-Z., Atkinson, J.D., Akid, R., Parkins, R.N., 1996. Crack Interaction, Coalescence and Mixed Mode Fracture Mechanics. Fatigue Fract Eng Mater Struct 19(4), 427–439.
Made with FlippingBook - Online catalogs