PSI - Issue 42

Available online at www.sciencedirect.com Available online at www.sciencedirect.com ^ĐŝĞŶĐĞ ŝƌĞĐƚ Structural Integrity Procedia 00 (2022) 000 – 000 Available online at www.sciencedirect.com ^ĐŝĞŶĐĞ ŝƌĞĐƚ Structural Integrity Procedia 00 (2022) 000 – 000

www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia

ScienceDirect

Procedia Structural Integrity 42 (2022) 1382–1390

23 European Conference on Fracture - ECF23 Effect of reinforcement parameters on the impact resistance of cementitious composites for vehicle restraint systems 23 European Conference on Fracture - ECF23 ffect of reinforce ent para eters on the i pact resistance of ce entitious co posites for vehicle restraint syste s

Martina Drdlová a *, Petr Böhm a , Petr Bibora a , Martin Šperl b a Research institut e for Building Materials, Hněvkovského 65, Brno 61700, Czech Republic b Institute for theoretical and applied mechanics, Prosecká 809/76, 190 00 Praha, Czech Republic artina Drdlová a *, Petr Böh a , Petr Bibora a , artin Šperl b a Research institut e for Building Materials, Hněvkovského 65, Brno 61700, Czech Republic b Institute for theoretical and applied mechanics, Prosecká 809/76, 190 00 Praha, Czech Republic

Abstract Abstract

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the 23 European Conference on Fracture – ECF23 The presented study investigates the dynamic resistance of cement-based large-format elements with various types of reinforcement and retrofitting. Both inner and outer reinforcement has been assessed. The effect of matrix type (low, high, and ultra-high-strength), amount of steel fibres, and ribbed reinforcing steel on impact toughness has been evaluated. The influence of an additional polymer-based layer to increase impact resistance level has also been investigated. The effectiveness of each reinforcing method has been compared. An large-scale impact hammer device KYV-I-2020 (up to 1100 J) has been used to determine the impact toughness. The results show that ribbed reinforcing steel increases the impact toughness more effectively than the fibre reinforcement, steel mesh and additional polymer layer. However, fibers significantly reduce fragmentation, especially at a higher concentration of 2.5 vol%, contributing to the overall higher impact resistance of the elements and their safety in practical use. The test results also show a significant effect of the matrix type, with the most increased impact toughness achieved when using a high strength matrix. The addition of an antifragmentation polymer layer then provides a further increase in impact toughness. The results also indicate that similar resistance capacity can be achieved using different reinforcement combinations, which is crucial for designing the material composition with the optimal performance/cost ratio. The presented research is a part of the development process of the restraint systems for stopping trucks. The data obtained has been used to create the elements with suitable composition; their effectiveness has been successfully verified by numerical simulations and real tests. The presented study investigates the dynamic resistance of cement-based large-format elements with various types of reinforcement and retrofitting. Both inner and outer reinforcement has been assessed. The effect of matrix type (low, high, and ultra-high-strength), amount of steel fibres, and ribbed reinforcing steel on impact toughness has been evaluated. The influence of an additional polymer-based layer to increase impact resistance level has also been investigated. The effectiveness of each reinforcing method has been compared. An large-scale impact hammer device KYV-I-2020 (up to 1100 J) has been used to determine the impact toughness. The results show that ribbed reinforcing steel increases the impact toughness more effectively than the fibre reinforcement, steel mesh and additional polymer layer. However, fibers significantly reduce fragmentation, especially at a higher concentration of 2.5 vol%, contributing to the overall higher impact resistance of the elements and their safety in practical use. The test results also show a significant effect of the matrix type, with the most increased impact toughness achieved when using a high strength matrix. The addition of an antifragmentation polymer layer then provides a further increase in impact toughness. The results also indicate that similar resistance capacity can be achieved using different reinforcement combinations, which is crucial for designing the material composition with the optimal performance/cost ratio. The presented research is a part of the development process of the restraint systems for stopping trucks. The data obtained has been used to create the elements with suitable composition; their effectiveness has been successfully verified by numerical simulations and real tests.

* Corresponding author. Tel.: +420-608-620-953; fax: +420-543-216-029. E-mail address: drdlova@vustah.cz * Corresponding author. Tel.: +420-608-620-953; fax: +420-543-216-029. E-mail address: drdlova@vustah.cz

2452-3216 © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of 23 European Conference on Fracture - ECF23 2452-3216 © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of 23 European Conference on Fracture - ECF23

2452-3216 © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the 23 European Conference on Fracture – ECF23 10.1016/j.prostr.2022.12.176

Made with FlippingBook - Online catalogs